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0 About this Document

This paper defines and discusses Version 1.0 of a language standard for the Satisfia-
bility Modulo Theories Library, or SMT-LIB for short.

This is an incomplete working document that will be updated on a regular basis.
Each new revision of the document will be identified by its date.

It is expected that each new revision will contain only conservative additions and
changes with respect to the previous revision, that is, it will not modify any already
given definitions for the SMT-LIB standard. A new revision will only add missing
definitions, or provide a more complete and improved presentation of the standard.

Place holders for missing material are denoted by text in square brackets.
To facilitate the reading of the document, explanations of the rationale of the

various design decisions taken in defining the SMT-LIB standard are written in small

san-serif font. They can be skipped on a first reading.

0.1 Copyright Notice

Permission is granted to anyone to make or distribute verbatim copies of this doc-
ument, in any medium, provided that the copyright notice and permission notice
are preserved, and that the distributor grants the recipient permission for further
redistribution as permitted by this notice. Modified versions may not be made.

1 Introduction

The main goal of the SMT-LIB initiative [2], coordinated by these authors and
supported by a large number of research groups world-wide, is to produce a on-line
library of benchmarks for satisfiability modulo theories . By benchmark we mean
a logical formula to be checked for satisfiability with respect to (combinations of)
background theories of interest. Examples of background theories typically used in
computer science are real and integer arithmetic and the theories of various data
structures such as lists, arrays, bit vectors and so on.

A lot of work has been done in the last few years by several research groups
on building systems for satisfiability modulo theories [?]. The main motivation of
the SMT-LIB initiative is the expectation that having a library of benchmarks will
greatly facilitate the evaluation and the comparison of these systems, and advance
the state of the art in the field, in the same way as, for instance, the TPTP library [3]
has done for theorem proving, or the SATLIB library [1] has done for propositional
satisfiability.

[more]
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SMT-LIB consists of two main sections: one containing the specification of sev-
eral background theories, and another containing benchmark sets, grouped under
a number of indexes such as their corresponding background theory, the class of
formulas they belong to, the type of problem they originate from and so on.

For the library to be viable and useful, SMT-LIB adopts a common standard for
expressing the benchmarks, and for defining the background theories in a rigorous
way—so that there is no doubt on which theories are intended.

2 Basic Assumptions and Structure

In the SMT-LIB standard input problems, i.e. logical formulas, are assumed to be
checked for satisfiability, not validity.1 In particular, given a theory T and a formula
ϕ, the problem of interest is whether ϕ is satisfiable in T , or is satisfiable modulo T ,
that is, whether there is a model of ϕ that satisfies (the existential closure of) ϕ.

Informally speaking, SMT-LIB calls a theory solver , or also a satisfiability pro-
cedure, any procedure for satisfiability modulo some given theory. In general, with
satisfiability procedures one can distinguish among

1. a procedure’s underlying logic (e.g., first-order, modal, temporal, second-order,
and so on),

2. a procedure’s background theory, the theory against which satisfiability is checked,
and

3. a procedure’s input language, the class of formulas the procedure accepts as
input.

For better clarity and modularity, these three aspects are kept separate in SMT-
LIB. SMT-LIB’s commitments to each of them are described in the following.

2.1 The Logic

Version 1 of the SMT-LIB standard adopts as its logic a basic many-sorted version of
first-order logic with equality. This logic allows the definition of sorts and of sorted
symbols but not allows no subsorts, sort constructors, terms declarations and so on.
These more sophisticated features may be added in the future2 but only as needed.

In an attempt to combine the simplicity and familiarity of classical, unsorted
logic with the convenience of a sorted language, the SMT-LIB standard defines two

1Note that the difference matters only for those classes of problems that are not closed under
logical negation.

2For instance, it is expected that Version 2 of the standard will include subsorts.
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semantics for its logic: the first one is a translation semantics into classical (unsorted)
first order logic with equality (FOL= ), the second one is a direct algebraic semantics
based on many-sorted models.

The first semantics is meant to ease the transition to a sorted framework for
existing tools, expertise and results, most of which have so far have been developed
in the context of classical FOL=. For the purposes of SMT-LIB the two semantics are
equivalent, as an SMT-LIB formula admits a (many-sorted) model in the algebraic
semantics if and only if its translation into FOL= admits a (unsorted) model in
FOL=.

The logic and its two semantics are specified in the next sections.

2.2 The Background Theories

One of the goals of the SMT-LIB initiative is to clearly define a catalog of background
theories, starting with a small number of popular ones, and adding new ones as
solvers for them are developed. Theories are specified in SMT-LIB independently of
any benchmarks or solvers. Each set of benchmarks then contains a reference to its
own background theory.

The SMT-LIB standard will eventually distinguish between basic (or component)
theories and combined (or structured) theories. Basic theories will include theories
such as the theory of real numbers, the theory of arrays, the theory of lists and so
on. A combined theory will be one that is defined as some kind of combination of
basic theories.

The current version of SMT-LIB supports only basic theories. This means in
practice that a theory composed of previously defined ones can always be defined in
this version of the standard, but only from scratch, as if it was a basic theories, with
no external references it its previously defined components. Support for the modular
definition of structures theories will be added in future versions of the standard.

For practicality, the standard insists that only the signature of a theory be spec-
ified formally.3 The theory itself can be defined either formally, by means of a set of
axioms, or informally, in natural language, as convenient.

2.3 The Benchmarks Language

The SMT-LIB standard adopts a single and general first-order (sorted) language in
which to write all SMT-LIB benchmarks.

It is often the case, however, that many benchmarks are expressed in a some
fragment of the language of first-order logic. The particular fragment in question

3By ”formal” here we will always mean written in a machine-readable and processable format,
as opposed to written in free text no matter how rigorously.
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does matter because one can often write a solver specialized on that fragment that
is a lot more efficient than a solver meant for a larger fragment.4

An extreme case of this situation occurs when satisfiability modulo a given theory
T is decidable for a certain fragment (quantifier-free, say) but undecidable for a
larger one (full first-order, say), as for instance happens with the theory of arrays
specified in Section C. But a similar situation occurs even when the decidability
of the satisfiability problem is preserved across various fragments. For instance, if
T is the theory of real numbers, the satisfiability in T of full-first order formulas
is decidable. However, one can build increasingly faster solvers by restricting the
language respectively to quantifier-free formula, linear equations and inequations,
difference equations, inequations between variables, and so on [?].

As a consequence, the SMT-LIB standard makes it possible to specify for any
benchmark set the specific sublanguage its benchmarks belong to.

3 The SMT-LIB Logic and Language

Because of the SMT-LIB translation semantics, for a semantical viewpoint the ul-
timate underlying logic for SMT-LIB is FOL=, the classical (unsorted) first-order
logic with equality. The external logic and its language are however many-sorted.

As a typed language, the SMT-LIB language for formulas and theories is inten-
tionally limited in expressive power. In essence, the language allows one only to
declare sorts (types) only by means of sort symbols, to specify the interface, or rank
of function and predicate symbols in terms of the declared sorts, and to specify the
sort of quantified variables.

In type theory terms, the language has no subtypes, no type constructors, no
type quantifiers, no provisions for parametric or subsort polymorphism, and so on.
Even explicit (ad-hoc) overloading of function or predicate symbols—by which a
symbol could be explicitly given more than one rank—is not allowed. The idea is
to provide, at least in this version, just enough expressive power to represent typical
benchmarks without getting bogged down in the complexity (and higher-orderness)
of type theory.

3.1 The Formula Sublanguage

The syntax of formulas in the SMT-LIB language extends the standard abstract
syntax of FOL= with a construct for declaring the sort of quantified variables, plus
the following non-standard constructs:

4By efficiency here we do not necessary refer to worst-case time complexity, but to efficiency “in
practice”.
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(Annotations) α ::= a = v

(Terms) u ::= x | n | f t∗ | ite ϕ t1 t2

(Annot. Terms) t ::= u α∗

(Connectives) κ ::= not | implies | and | or | xor | iff

(Atoms) A ::= true | false | ξ | p t∗ | = t∗ | distinct t∗

(Formulas) ψ ::= A | κ ϕ+ | ∃ (x:s)+ ϕ0 | ∀ (x:s)
+ ϕ0

| let x = t in ϕ0 | flet ξ = ϕ0 in ϕ1

| if ϕ0 then ϕ1 else ϕ2

(Annot. Formulas) ϕ ::= ψ α∗

x ∈ X , the set of term variables ξ ∈ Ξ, the set of formula variables
n ∈ N , the set of numerals f ∈ F , the set of function symbols
p ∈ P , the set of predicate symbols s ∈ S, the set of sort symbols
a ∈ A, the set of attributes v ∈ V , the set of attribute values

Figure 1: Abstract syntax for unsorted terms and formulas

• an if-then-else construct for terms,

• an if-then-else logical connective,

• a let construct for terms,

• a let construct for formulas, and

• a distinct construct for declaring a number of values as pairwise distinct.

• an annotation mechanism for terms and formulas.

Except for the first extension, needed to support sorts, the other extensions are
provided for greater convenience. We discuss each of them in the following.

An abstract grammar and syntax for a superset of the SMT-LIB language of
logical formulas is defined in Figure 1 by means of production rules. This is a
superset of the language because it contains ill sorted terms and formulas. The
proper well sorted subset is defined later by means of a separate sort system.

The rules assume as given the following sets of symbols:

• an infinite set X of term variables , standard first-order variables that can be
used in place of a term;

8



• an infinite set Ξ of formula variables , second-order variables that can be used
in place of a formula;

• an infinite set N of numerals, for the natural numbers;

• an infinite set F of function symbols ;

• an infinite set P of predicate symbols ;

• an infinite set S of sort symbols ;

• an infinite set A of attribute symbols ;

• a set V of attribute values.

It is required that A be disjoint from all the other sets. The remaining sets need

not be disjoint because the syntax of terms and formula allows one to infer to which set a

particular symbol/value belongs.
In Figure 1 and later in the paper, boldface words denote terminal symbols and

the ( )∗ operator denotes as usual zero or more repetitions of the operand, while the
( )+ operator denotes one or more repetitions of the operand. Function/predicate
applications are denoted simply by justaposition, as this is enough at the abstract
level. Parentheses are metasymbols, used just for grouping—they are not symbols
of the abstract language. In the production rules, the letter a denotes attribute
symbols, the letter v attribute values, the letter x term variables, the letter ξ formula
variables, the letter n numerals, the letter f functions symbols, the letter f predicate
symbols, the letter u terms, the letter t annotated terms, the letter s sort symbols,
the letter ψ formulas, and the letter ϕ annotated formulas.

The given grammar does not distinguish between constant and function symbols
(they are all defined as members of the set F), and between propositional variables
and predicate symbols (they are all defined as members of the set P). These distinc-
tions are really a matter of arity, which is taken care of later by the well-sortedness
rules. A similar observation applies to the logical connectives, the members of κ
class, and the number of arguments they are allowed take.

From now on, we will simply say term to mean a possibly annotated term, and
formula to mean a possibly annotated formula.

As usual, one can speak of the free variables of a formula. Formally, The set
Var(t) of free term variables in a term t and the set Var(ϕ) of free term variables
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in a formula ϕ are respectively defined below by structural induction.

Var(x) = {x}
Var(n) = ∅
Var(f t1 · · · tk) = Var(t1) ∪ · · · ∪ Var(tk)
Var(ite ϕ0 t1 t2) = Var(ϕ0) ∪ Var(t1) ∪ Var(t2)
Var(u α1 · · ·αk) = Var(u)

Var(true) = ∅
Var(false) = ∅
Var(ξ) = ∅
Var(π t1 · · · tk) = Var(t1) ∪ · · · ∪ Var(tk)

if π ∈ P ∪ {=,distinct}
Var(κ ϕ1 · · ·ϕk) = Var(ϕ1) ∪ · · · ∪ Var(ϕk)
Var(∀ x1:s1 . . . xk:sk ϕ0) = Var(ϕ0) \ {x1 . . . xk}
Var(∃ x1:s1 . . . xk:sk ϕ0) = Var(ϕ0) \ {x1 . . . xk}
Var(let x = t in ϕ0) = Var(t) ∪ (Var(ϕ0) \ {x})
Var(flet ξ = ϕ0 in ϕ1) = Var(ϕ0) ∪ Var(ϕ1)
Var(if ϕ0 then ϕ1 else ϕ2) = Var(ϕ0) ∪ Var(ϕ1) ∪ Var(ϕ2)
Var(ψ α1 · · ·αk) = Var(ψ)

[note on the fact that with let x = t in ϕ0, x is bound in ϕ0 but not in t. ]
The set Far(ϕ) of free formula variables in a formula ϕ is instead defined as

follows

Far(true) = ∅
Far(false) = ∅
Far(ξ) = {ξ}
Far(π t1 · · · tk) = ∅ if π ∈ P ∪ {=,distinct}
Far(κ ϕ1 · · ·ϕk) = Far(ϕ1) ∪ · · · ∪ Far(ϕk)
Far(∀ x1:s1 . . . xk:sk ϕ0) = Far(ϕ0)
Far(∃ x1:s1 . . . xk:sk ϕ0) = Far(ϕ0)
Far(let x = t in ϕ0) = Far(ϕ0)
Far(flet ξ = ϕ0 in ϕ1) = Far(ϕ0) ∪ (Far(ϕ1) \ {ξ})
Far(if ϕ0 then ϕ1 else ϕ2) = Far(ϕ0) ∪ Far(ϕ1) ∪ Far(ϕ2)
Far(ψ α1 · · ·αk) = Far(ψ)

[note on the fact that with flet ξ = ϕ0 in ϕ1, ξ is bound in ϕ1 but not in ϕ0. ]
A formula ϕ is closed iff Var(ϕ) = Far(ϕ) = ∅.
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3.2 The additional constructs

[connecting text]

The if-then-else construct for terms

This construct is very common in benchmarks coming from hardware verification.
Technically, it is a function symbol of arity 3, taking as first argument a formula and
as second and third arguments a term. Semantically, an expression like

ite(ϕ, t1, t2)

evaluates to the value of t1 in every interpretation that makes ϕ true, and to the
value of t2 in every interpretation that makes ϕ false.

Although it can be defined in terms of more basic constructs, this construct
provides important structural information that a solver may be able to use advan-
tageously. More importantly, for large benchmarks, eliminating ite constructs can
result in an unacceptable blowup in the size of the formula. For these reasons, the
SMT-LIB standard supports them natively.

The if-then-else logical connective

This construct is also common in verification benchmarks. It is used to build a
formula of the form

if ϕ0 then ϕ1 else ϕ2

which is semantically equivalent to the formula

(ϕ0 implies ϕ1) and (not ϕ0 implies ϕ1)

The SMT-LIB standard supports this if-then-else connective natively for similarly
reasons it supports the ite term constructor.

The let construct for terms

This construct builds a formula of the form

let x = t in ϕ0

which is semantically equivalent to the formula obtained from ϕ0 by simultaneously
replacing every free occurrence of x in ϕ0 by t, and renaming as necessary the bound
variables of ϕ0 so that the variables of t remain free. The construct is convenient for
benchmark compactness as it allows one to replace multiple occurrences of the same
term by a variable. It is also useful for a solver because it saves the solver the effort
of recognizing the various occurrences of the same term as such.

[comment on semantics, scope and binding]

11



The let construct for formulas

This construct builds a formula of the form

flet ξ = ϕ0 in ϕ1

which is semantically equivalent to the formula obtained from ϕ1 by simultaneously
replacing every free occurrence of ξ in ϕ1 by ϕ0, and renaming as necessary the
bound variables of ϕ1 so that the free variables of ϕ0 remain free. The rationale
for supporting this construct in SMT-LIB is similar to that for supporting the let
construct for terms.

[comment on semantics, scope and binding]

The distinct construct

This construct as well is supported for conciseness. It is a variadic construct for
building formulas of the form

distinct(t1, . . . , tn)

with n ≥ 2. Semantically, it is equivalent to the conjunction of all disequations of
the form not(ti = tj) for 1 ≤ i < j ≤ n.

The annotation mechanism for terms and formulas

Each term or formula can be annotated with a list of attribute/value pairs where
each pair has the form

a v

where a is a symbol representing an attribute’s name and v is the attribute’s value.
The syntax of attribute values is user-dependent and as such it is left unspecified by
the SMT-LIB standard. Annotations are meant to provide extra-logical information
which, while not changing the semantics of a term or formula, may be useful to an
SMT solver.

It is expected that typical annotations will provide operational information for
the solver. For instance, the annotation α in a formula of the form

∀ x1:s1 . . . x:sk ϕ0 α

might specify an instantiation pattern for the quantifier ∀ x1:s1 . . . x:sk, as done in
the Simplify prover [?]. Or, for formulas that represent verification conditions for
a program, the annotation might contain information relating the formula to the
original code the formula was derived from.5

5A similar idea is used in the ESC/Java system with the use of a special “label” predicate [?].
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3.3 Well-sorted formulas

The SMT-LIB language of formulas is the largest set of well-sorted formulas con-
tained in the language generated by the rule for annotated formulas in the grammar
of Figure 1.

Well-sorted formulas are defined by means of a set of sorting rules, similar in
format and spirit to the kind of typing rules found in the programming languages
literature. The rules are based on the following definition of (many-sorted) signature.

Definition 1 (SMT-LIB Signature) An SMT-LIB signature Σ is a tuple consist-
ing of:

• a non-empty set ΣS ⊆ S of sort symbols, a set ΣF ⊆ F of function symbols, a
set ΣP ⊆ P of predicate symbols,

• a total mapping from the term variables X to ΣS,

• a total mapping from ΣF to (ΣS)+, the non-empty sequences of elements of ΣS,
and

• a mapping from ΣP to (ΣS)∗. the sequences of elements of ΣS,

The sequence of sorts associated by Σ to a function/predicate symbol is called
the rank of the symbol

As usual, the rank of a function symbol specifies the expected sort of the symbol’s
argument and result. Similarly for predicate symbols. Note that the sets ΣS, ΣF and
ΣP of an STM-LIB signature are not required to be disjoint. So it is possible for a
symbol to be both a function and a predicate symbol, say. This causes no ambiguity

in the language because positional information is enough to determing during parsing if a given

occurrence of a symbol is a function, predicate or sort symbol. However, is not possible for
a function (resp. predicate) symbol to have more than one rank.6 In other words, ad
hoc overloading of function or of predicate symbols is not allowed. This restriction is

imposed mainly in order to simplify parsing and well-sortedness checking of SMT-LIB formulas.

Figure 2 provides a set of rules defining well-sorted terms, while Figure 3 provides
a rule set defining well-sorted formulas. The sort rules presuppose the existence of an
SMT-LIB signature Σ. Strictly speaking then, the SMT-LIB language is a family of
languages parametrized by Σ. As explained later, for each benchmark ϕ and theory
T , the specific signature is jointly defined by the specification of T and that of the
benchmark set containing ϕ.

6This is a consequence of the last two mappings in the definition of SMT-LIB signature.
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Σ `t x : s
if x : s ∈ Σ

Σ `t n : s
if n : s ∈ Σ

Σ `t t1 : s1 · · · Σ `t tk : sk

Σ `t f t1 · · · tk : sk+1

if f : s1 · · · sk+1 ∈ Σ

Σ `f ϕ Σ `t t1 : s Σ `t t2 : s

Σ `t ite ϕ t1 t2 : s

Figure 2: Well-sortedness rules for terms

Σ `f true Σ `f false Σ `f ξ

Σ `t t1 : s1 · · · Σ `t tk : sk

Σ `f p t1 · · · tk
if p : s1 · · · sk ∈ Σ

Σ `t t1 : s · · · Σ `t tk+2 : s

Σ `f = t1 · · · tk+2

Σ `t t1 : s · · · Σ `t tk+2 : s

Σ `f distinct t1 · · · tk+2

Σ `f ϕ

Σ `f not ϕ

Σ `f ϕ1 Σ `f ϕ2

Σ `f impl ϕ1 ϕ2

Σ `f ϕ0 Σ `f ϕ1 Σ `f ϕ2

Σ `f if ϕ0 then ϕ1 else ϕ2

Σ `f ϕ1 · · · Σ `f ϕk+2

Σ `f c ϕ1 · · · ϕk+2

if c ∈ {and,or,xor, iff}

Σ, x1:s1, . . . , x:sk+1 `f ϕ

Σ `f ∃x1:s1 . . . x:sk+1 ϕ

Σ, x1:s1, . . . , x:sk+1 `f ϕ

Σ `f ∀x1:s1 . . . x:sk+1 ϕ

Σ `t t : s Σ, x : s `f ϕ

Σ `f let x = t in ϕ

Σ `f ϕ0 Σ `f ϕ1

Σ `f flet ξ = ϕ0 in ϕ1

Figure 3: Well-sortedness rules for formulas
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The format and the meaning of the sort rules in the two figures is pretty standard
and should be largely self-explanatory. The integer index k in the rules is assumed
≥ 0; the notation x:s ∈ Σ means that Σ maps the variable x to the sort s. The
notation f :s1 · · · sn+1 ∈ Σ means that f ∈ ΣF and Σ maps f to the sort sequence
s1 · · · sn+1 (and similarly for numerals and predicate symbols). The expression Σ, x:s
denotes the signature that maps x to the sort s and otherwise coincides with Σ.

A term t generated by the grammar in Figure 1 is well-sorted (with respect to Σ)
if the expression Σ `t t:s is derivable by the sort rules in Figure 2 for some sort
s ∈ ΣS. In that case, we say that t is of sort s.

A formula ϕ generated by the grammar in Figure 1 is well-sorted (with respect to
Σ) if the expression Σ `f ϕ is derivable by the sort rules in Figure 3.

Definition 2 (SMT-LIB formulas) The SMT-LIB language for formulas is the
set of all closed well-formed formulas.

Note that the SMT-LIB language for formulas contains only closed formulas.
This is mostly a technical restriction, motivated by considerations of convenience. In fact, with

a closed formula ϕ of a signature Σ the particular mapping of term variables to sorts defined

by Σ is irrelevant. The reason is that the formula itself contains its own sort declaration for

its term variables, either explicitly, for the variables bound by a quantifier, or implicitly, for the

variables bound by a let. Using only closed formulas then simplifies the task of specifying their

signature, as it becomes unnecessary to specify how the signature maps the elements of X to

the signature’s sorts.

There is no loss of generality in allowing only closed formulas because, as far as
satisfiability of formulas is concerned, every formula ϕ with free variables Var(ϕ) =
{x1, . . . , xn}, where each xi is expected to have sort si, can be rewritten as

∃ x1:s1 . . . xn:sn ϕ.

An alternative way to avoid free variables in benchmarks is defined in Section 5
A similar situation arises with formula variables. In fact, all free occurrences of

a formula variable can be replaced by a fresh predicate symbol p declared in Σ as
having empty arity.

4 The SMT-LIB Theory Language

This version of the standard considers only the specification of basic background
theories. Facilities for specifying structured theories will be introduced in a later
version.
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(Fun. sym. declaration) Df ::= f s+ α

(Pred. sym. declaration) Dp ::= p s∗ α

(Attribute-value pair) PT ::= sorts = s+

| funs = (Df )
+ | preds = (Dp)

+

| definition = w | axioms = ϕ+

| extensions = w | notes = w | α

(Theory declaration) DT ::= theory T begin
(PT )

+

end

T ∈ T , the set of theory symbols w ∈ W , the set of character strings

Figure 4: Abstract syntax for theories

A theory declaration defines both an order-sorted signature for a theory and the
theory itself. The abstract syntax for a theory declaration in the SMT-LIB format
is provided in Figure 4. The syntax follows an attribute-value-based format.

In addition to the already defined symbols and syntactical categories, the pro-
duction rules in Figure 4 assume as given the following sets of symbols:

• an infinite set W of character strings, meant to contain free text;

• an infinite set T of theory symbols, used to give a name to each theory.

In the rules, the letter w denotes strings and the letter T theory symbols.
The symbols funs, preds, axioms, extensions, notes, sorts, and definition

are reserved attribute symbols from A. Their sets of values are as specified in the
rules. In addition to the predefined attributes, a theory declaration DT can contain
an unspecified number of user defined attributes, and their values—formalized in the
grammar simply as annotations α.

[note on user defined attribute: expandable and customizable format ]
Note that attribute/value pairs in a theory declaration can be written in any

order. However, they are subject to the restriction below.

Definition 3 (Theory Declarations) The only legal theory declarations in the
SMT-LIB format are those that

1. contain the attributes sort and definition7;

7Which makes those attributes non-optional.
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2. do not contain repeated attribute symbols;

3. [restrictions on function/predicate symbols declarations: no overloading]

4. [more restrictions on axioms: must be of the declared signature]

The first restriction is explained in the following. The second restriction is just to simplify

later the definition of a declation semantics, and the automated processing of theory declations.

Some attributes, such as definition for instance, are informal attributes in the
sense that their value (w) is free text. Ideally, a formal specification of the given free-text

attributes would be preferable to free text in order to avoid ambiguities and misinterpretation.

The choice of using free text for these attributes is motivated by practicality reasons. In fact,

(i) these attributes are meant to be read by human readers, not programs, and (ii) the amount

of effort needed to first devise a formal language for these attributes and then specify their

values for each theory in the library does not seem justified by the current goals of SMT-LIB.

The signature of a theory is defined by the attributes sorts, funs and preds in
the obvious way. A declaration Df for a function symbol f specifies the symbol’s
rank, and may contain additional, user-defined annotations. A typical annotation
might specify that f is associative, say. While this property is expected to be specified

also in the definition of the theory (or to be a consequence thereof), an explicit declaration at

this point could be useful for certain solvers that treat associative symbols in a special way.

Similarly, a declaration Dp for a predicate symbol p specifies the symbol’s the rank and may

be augmented with user-defined annotations.

This version of the format does not specify any predefined annotations for func-
tion and predicate symbols. Future versions might do so, depending on the recom-
mendations and the feedback of the SMT-LIB user community.

The funs and preds attributes are optional because a theory might lack function
or predicate symbols.8 The sorts attribute, however, is not optional because sorted
frameworks require the existence of at least one sort. This is no real limitation of course

because, for instance, any unsorted theory can be always seen as at least one-sorted.

The non-optional definition attribute is meant to contain a natural language
definition of the theory. While this definition is expected to be as rigorous as possible,
it does not have to be a formal one. Some theories (like the theory of real numbers)
are well known, and so just a reference to their common name might be enough. For
theories that have a small set of axioms (or axiom schemas), it might be convenient
to list the actual axioms. For some other theories, a mix a formal notation and
informal explanation might be more appropriate.

Formal, first-order axioms that define part of or a whole theory can be addition-
ally provided in the optional axioms attribute as a list of SMT-LIB formulas. In

8Or both, although a theory with no function and no predicate symbols is perhaps not very
useful.
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(Formula status) σ ::= sat | unsat | unknown

(Attribute-value pair) Pb ::= assumption = ϕ | formula = ϕ

| status = σ | α

(Benchmark declaration) Db ::= benchmark b begin
(Pb)

+

end

b ∈ B, the set of benchmark symbols

Figure 5: Abstract syntax for benchmarks

addition to being more rigorous, the formal definition of (a part of) a theory provided in the

axioms attribute, might be useful for solvers that might not have (that part of) the theory

built in, but accept theory axioms input. In essence, this is currently the case for instance for

the solvers Simplify [?], CVC Lite [?], Harvey [?], and Argo-lib [?].

The optional attribute extensions is meant to document any notational conven-
tions used in the listed benchmarks. This is useful because often the syntax of a
theory is extended for convenience with syntactic sugar. One example of such con-
ventions comes for instance from (the theory of) linear Presburger arithmetic, where
a numeral n abbreviates the n-fold application of the successor function to 0, and
the expression n ∗ t stands for the term t+ · · ·+ t

︸ ︷︷ ︸

n times

.

The optional attribute notes is meant to contain documentation information
such as authors, date, version, etc. of a specification.

5 The SMT-LIB Benchmark Language

In SMT-LIB, a benchmark is a closed SMT-LIB formula with attached additional
information, specified in a benchmark declaration. Benchmarks are grouped into
benchmark sets. A benchmark set declaration contains, in addition to the bench-
marks themselves, a reference to their background theory, a description of the lan-
guage fragment to which the benchmarks belong, and an optional specification of
additional function and predicate symbols.

The abstract syntax for a benchmark and for a benchmark set declaration in the
SMT-LIB format is provided in Figure 5 and Figure 6, respectively. This syntax too
is attribute-value-based.

In addition to the already defined symbols and syntactical categories, the pro-
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(Attribute-value pair) PS ::= theory = T | benchmarks = (Db)
+

| extrafuns = (Df )
+ | extrapreds = (Dp)

+

| language = w | notes = w | α

(Bench. set declaration) DS ::= benchset S begin
(PB)

+

end

S ∈ BS, the set of benchmark set symbols

Figure 6: Abstract syntax for benchmark sets

duction rules in the two figures assume as given the following sets of symbols:

• an infinite set B of benchmark symbols, used to give a name to each benchmark,
and

• an infinite set BS of benchmark set symbols, used to give a name to each
benchmark set.

In the rules, the letter b denotes benchmark symbols and the letter B benchmark
set symbols.

The symbols assumption, formula, status, theory, benchmarks, extrafuns,
extrapreds, language, and notes are reserved attribute symbols from A. Their
sets of values are as specified in the rules. As with theories, both benchmark
and benchmark set declarations can also contain user-defined attributes and their
values—formalized again as annotations α.

Definition 4 (Benchmark Declarations) The only legal benchmark declarations
in the SMT-LIB format are those that

1. contain the attributes formula and status, and

2. do not contain repeated attribute symbols.

In a benchmark declaration of the form

benchmark b begin
assumption = ϕ0

formula = ϕ1

status = σ

end
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the formulas ϕ0 and ϕ1 together constitute the benchmark. The intended test is
whether the formula ϕ1 is satisfiable in the background theory under the assumption
ϕ0; in other words, whether the formula (and ϕ0 ϕ) is satisfiable in the background
theory. The assumption ϕ0 is assumed to be just true whenever the optional at-
tribute assumption is absent. [explanation of why it is useful to have explicit assump-

tions]

The attribute status of a benchmark declaration records whether the benchmark
is known to be (un)satisfiable in the background theory. Knowing about the satisfiability

of a benchmark is useful for debugging new solvers.

Definition 5 (Benchmark Set Declarations) The only legal benchmark set dec-
larations in the SMT-LIB format are those that satisfy the following restrictions:

1. the declaration contains the attributes theory and benchmarks;

2. the value of the attribute theory coincides with the name of a theory T for
some theory declaration DT in SMT-LIB;

3. the sort symbols occurring in (the value of) the attributes extrafuns or extrapreds
are among the symbols listed in the attribute sorts of DT ;

4. there are no repeated occurrences of function (resp., predicate) symbols in the
attribute extrafuns (resp., extrapreds);

5. no symbol occurring in extrafuns (resp., extrapreds) occurs in the attribute
funs (resp., preds) of DT ;

6. all function (resp., predicate) symbols occurring in the attribute benchmarks
are declared either in extrafuns (resp., extra preds) or in the attribute funs
(resp., preds) of DT .

7. all formulas in the benchmarks contained in the attribute benchmarks are
over the sort, function and predicate symbols declared in DT , extrafuns and
extra preds.

The optional attribute language of a benchmark set declaration attribute de-
scribes in free text the specific subset of SMT-LIB formulas to which the listed
benchmarks belong. As explained in Section 2.3, this is information is useful for
tayloring solvers to the specific sublanguage of formulas used in the benchmark set.
The attribute is text valued because it has mostly documentation purposes for the benefit of

benchmark users. A natural language description of the sublanguage seems therefore adequate

for this purpose.
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The extrafuns attribute complements the funs attribute of the corresponding
theory specification by declaring additional function symbols with their rank. The
extrapreds attribute has a similar purpose, but for predicate symbols. In contrast
with the symbols possibly defined in the extensions attribute of a theory specifi-
cation, which are interpreted in terms of the symbols in the theory, the symbols in
extrafuns and extrafuns are “uninterpreted” in associated theory.9 Uninterpreted
function or predicate symbols are found often in applications of satisfiability modulo
theories, typically as a consequence of Skolemization or abstraction transformations
applied to more complex formulas. Hence theory solvers typically accept formulas
containing uninterpreted symbols in addition to the symbols of their background the-
ory. The extrafuns and extrapreds attributes serve to declare any uninterpreted
symbols occurring in benchmarks listed in the benchmarks attribute. The value of

extrafuns and extrapreds attributes is specified formally because, in effect, it dynamically

expand the signature of the associated background theory, hence it is convenient for it to be

directly readable by satisfiability procedures for that theory.

The extrafuns attribute is also useful for specifying benchmarks consisting of
formulas with free term variables (such as quantifier-free formulas). As discussed in
Section 3.3, the legal formulas of SMT-LIB do not contain free variables. One way
to circumvent this restriction is to close formulas existentially. Another one is to
replace each free term variable by a fresh constant symbol of the appropriate sort.
In the second case, these extra constant symbols can be declared in the extrafuns
attribute. A similar situation can occur in principle with free formula variables,
which can stand for unspecified predicates. Each free occurrence of a formula variable
can be replaced by a fresh predicate symbol of empty arity (a.k.a, a propositional
variable). Such symbols can be declared in the extrapreds attribute.

Note that all function or predicates symbols occurring in the benchmarks of a
benchmark set must be declared either in the corresponding theory specification or
in the extrafuns and extrapreds attributes. One could think of relaxing this restriction

by adopting the convention that any undeclared function or predicate symbol occurring in a

benchmark is automatically considered as uninterpreted. Contrary to unsorted logics, however,

this approach is not feasible in SMT-LIB because it is not be possible in general to automatically

infer (the sorts in) the rank of an undeclared symbol. [to add: at the many sorted level one could

assume an uninterpreted sort as well and default to that sort, but that is not very satisfactory,

and in any case it will be enough to achieve automated sort inference once subsorts are added.

]

9In logic parlance, they are free symbols for the theory.
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6 Semantics

6.1 Translation Semantics

One semantics for SMT-LIB formulas and theories is provided by a translation of
formulas and their signature into formulas of FOL=, classical first order logic with
equality.

We define a translation operator τ , following a well-known relativization pro-
cess for translating many-sorted logics into classical logic—see for instance [?, ?].
Formally, the SMT-LIB translation semantics is defined as follows.

Definition 6 Let Σ be an SMT-LIB signature and let T be a theory of signature
Σ axiomatized by a set Ax of (SMT-LIB) formulas. For every Σ-formula ψ we say
that ψ is satisfiable in T iff the set

{(f : s1 · · · sk+1)
τ | f : s1 · · · sk+1 ∈ ΣF} ∪ {ϕτ | ϕ ∈ Ax} ∪ {ψτ}

of FOL= formulas is satisfiable (in the classical sense).

The signature Σ and the axioms Ax in the definition above are meant to be
elicited from the specification of a benchmark set containing the formula ψ, and
from the specification of the benchmark set’s background theory. [to add: more
details on ow to elicit Σ].

A fine point to note about our translation semantics is that it effectively requires
the given background theory to be defined axiomatically—so that one can identify
the set Ax needed in Definition 6.

The translation operator τ is defined in Figure 7 for function symbol declara-
tions and terms, and in Figure 8 for formulas. The translation into FOL= use a
conventional syntax for FOL= sentences, with the exclusive or connective denoted
by ⊕. On terms, the operator τ is defined only for terms that do not contain ite
espressions. ite’s are eliminated from terms as shown in Figure 8. It is easy to show
that τ is well defined.

In Figure 8, ϕ′ denotes a rectified version of ϕ obtained by renaming apart all
quantifiers—and their bound variables—into fresh variables, while ϕ′{x 7→ t} denotes
the formula obtained from ϕ′ by simultaneously replacing every unbound occurrence
of the variable x in ϕ′ by the term t.10 Similarly for ϕ′{ξ 7→ ϕ0}. The expression
A[ite ϕ t1 t2] denotes an atomic formula A containing an occurrence of the term
(ite ϕ t1 t2), while A[ti] (i = 1, 2) denotes the formula obtained from A[ite ϕ t1 t2]
be replacing that occurrence of (ite ϕ t1 t2) with ti.

10This is to avoid that the (free) variables of t become bound after the substitution.
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Function declarations

(f : s1 · · · sk+1)
τ = ∀x1, . . . , xn. (s1(x1) ∧ · · · ∧ sk(xn)⇒ sk+1(f(x1, . . . , xk)))

ite-free Terms

xτ = x

nτ = n

(f t1 · · · tk)
τ = f(t1

τ , . . . , tk
τ )

(u α1 · · ·αk)
τ = uτ

Figure 7: Translation of function declarations and terms

Formulas

falseτ = ⊥
trueτ = ¬⊥
(π t1 · · · tk)

τ = π(t1
τ , . . . , tk

τ )
if π ∈ P ∪ {=,distinct} and t1, . . . , tk are ite-free

(A[ite ϕ t1 t2])
τ = (ϕτ ⇒ (A[t1])

τ ) ∧ (¬ϕτ ⇒ (A[t2])
τ )

(not ϕ)τ = ¬ϕ1
τ

(implies ϕ1 ϕ2)
τ = ϕ1

τ ⇒ ϕk
τ

(and ϕ1 · · ·ϕk)
τ = ϕ1

τ ∧ · · · ∧ ϕk
τ

(or ϕ1 · · ·ϕk)
τ = ϕ1

τ ∨ · · · ∨ ϕk
τ

(xor ϕ1 · · ·ϕk)
τ = ϕ1

τ ⊕ · · · ⊕ ϕk
τ

(iff ϕ1 · · ·ϕk)
τ = ϕ1

τ ⇔ · · · ⇔ ϕk
τ

(if ϕ0 then ϕ1 else ϕ2)
τ = (ϕ0

τ ⇒ ϕ1
τ ) ∧ (¬ϕ0

τ ⇒ ϕ2
τ )

(∀ x1:s1 . . . xk:sk ϕ0)
τ = ∀ x1, . . . , xk. (s1(x) ∧ · · · ∧ sk(xk)⇒ ϕ0

τ )
(∃ x1:s1 . . . xk:sk ϕ0)

τ = ∃ x1, . . . , xk. (s1(x) ∧ · · · ∧ sk(xk) ∧ ϕ0
τ )

(let x = t in ϕ)τ = (ϕ′{x 7→ t})τ

(flet ξ = ϕ0 in ϕ)
τ = (ϕ′{ξ 7→ ϕ0})

τ

(ψ α1 · · ·αk)
τ = ψτ

Figure 8: Translation of formulas

23



6.2 Model-theoretic Semantics

[to do]

6.3 Equivalence of the two Semantics

[to do]

7 Concrete Syntax

This section defines and explains the concrete syntax of the whole STM-LIB lan-
guage. The adopted syntax is attribute-based and Lisp-like. Its design was driven
more by the goal of simplifying parsing, than that of facilitating readability by hu-
mans. Preferring ease of parsing over human readability is reasonable in this context because

it is expected not only that SMT-LIB benchmarks will be typically read by solvers but also

that, by and large, they will be produced in the first place by automated tools like verification

condition generators or translators from other formats. An alternative concrete syntax,
more readable for human users, and a translation from the current concrete syntax
might be defined in a later version of the standard.

In BNF-style production rules that define the concrete syntax, terminal symbols
are denoted by sequences of characters in typewriter font. Syntactical categories
are denoted by text in angular braces and slanted font. For simplicity, white space
symbols are not modeled in the rules. It is understood though that, as usual, every
two successive terminals in an actual expression must be separated by one or more
white space characters, unless one of them is a parenthesis.11

As with the abstract syntax, the production rules of the concrete syntax define a
superset of the legal expressions. The subset of legal expression is of course the one
the satisfies the same constraints defined for the abstract syntax.

7.1 Comments

Source files containing SMT-LIB expressions may contain comments in the sense of
programming languages. In SMT-LIB, a comment is a sequence of characters that
start with the character ; and is terminated by a new line character. The choice of

; as the comment character is simply for consistency with the Lisp-like flavor of the concrete

syntax.

11The set of concrete terminal symbols includes the open and closed parenthesis symbols.
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〈identifier〉 ::= a sequence of letters, digits, dots (.), and underscores ( ),
starting with a letter

〈numeral〉 ::= a non-empty sequence of digits

〈var〉 ::= ?〈identifier〉

〈fvar〉 ::= $〈identifier〉

〈attribute〉 ::= :〈identifier〉

〈ar symb〉 ::= a non-empty sequence of the characters:
=, <, >, &, @, #, +, -, *, /, %, |, ~

〈fun symb〉 ::= 〈identifier〉 | 〈ar symb〉

〈pred symb〉 ::= 〈identifier〉 | 〈ar symb〉 | distinct

〈sort symb〉 ::= 〈identifier〉

〈annotation〉 ::= 〈attribute〉 | 〈attribute〉 〈value〉

〈base term〉 ::= 〈variable〉 | 〈numeral〉 | 〈identifier〉

〈an term〉 ::= 〈base term〉 | ( 〈base term〉 〈annotation〉+ )

| ( 〈fun symb〉 〈an term〉+ 〈annotation〉∗ )
| ( ite 〈an formula〉 〈an term〉 〈an term〉 〈annotation〉∗ )

〈prop atom〉 ::= true | false | 〈fvar〉 | 〈identifier〉

〈an atom〉 ::= 〈prop atom〉 | ( 〈prop atom〉 〈annotation〉+ )

| ( 〈pred symb〉 〈an term〉+ 〈annotation〉∗ )

〈connective〉 ::= not | implies | if then else

| and | or | xor | iff

〈quant symb〉 ::= exists | forall

〈quant var〉 ::= ( 〈var〉 〈sort symb〉 )

〈an formula〉 ::= 〈an atom〉
| ( 〈connective〉 〈an formula〉+ 〈annotation〉∗ )
| ( 〈quant symb〉 〈quant var〉+ 〈an formula〉 〈annotation〉∗ )
| ( let ( 〈var〉 〈an term〉 ) 〈an formula〉 〈annotation〉∗ )
| ( flet ( 〈fvar〉 〈an formula〉 ) 〈an formula〉 〈annotation〉∗ )

Figure 9: Concrete syntax for unsorted terms and formulas
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〈string〉 ::= any sequence of characters other than double quotes ("),
and enclosed in double quotes

〈fun symb decl〉 ::= ( 〈fun symb〉 〈sort symb〉+ 〈annotation〉∗ )

〈pred symb decl〉 ::= ( 〈pred symb〉 〈sort symb〉∗ 〈annotation〉∗ )

〈theory name〉 ::= 〈identifier〉

〈theory attribute〉 := :notes 〈string〉
| :sorts ( 〈sort symb〉+ )

| :funs ( 〈fun symb decl〉+ )

| :preds ( 〈pred symb decl〉+ )

| :extensions 〈string〉
| :definition 〈string〉
| :axioms 〈string〉
| 〈annotation〉

〈theory〉 ::= ( theory 〈theory name〉 〈theory attribute〉+ )

Figure 10: Concrete syntax for theories

7.2 Terms and formulas

The concrete syntax for SMT-LIB unsorted terms and formulas is given in Figure 9
with BNF production rules based on the abstrat syntax rules given in Figure 1.

[more]

7.3 Theories

The concrete syntax for SMT-LIB theory declarations is given in Figure 10 with
BNF production rules based on the abstrat syntax rules given in Figure 4.

[more]

7.4 Benchmarks and benchmark sets

The concrete syntax for SMT-LIB benchmark and benchmark set declarations is
given in Figure 11 and Figure 12 with BNF production rules based on the abstrat
syntax rules given in Figure 5 and Figure 6, respectively.

[more]
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〈status〉 ::= sat | unsat | unknown

〈bench name〉 ::= 〈identifier〉

〈bench attribute〉 := :assumption 〈an formula〉
| :formula 〈an formula〉
| :status 〈status〉
| 〈annotation〉

〈benchmark〉 ::= ( benchmark 〈bench name〉 〈bench attribute〉+ )

Figure 11: Concrete syntax for benchmarks

〈benchset name〉 ::= 〈identifier〉

〈benchset attribute〉 := :theory 〈theory name〉
| :benchmarks 〈benchmark〉+

| :extrafuns 〈fun symb decl〉+

| :extrapreds 〈pred symb decl〉+

| :language 〈string〉
| :notes 〈string〉
| 〈annotation〉

〈benchset〉 ::= ( benchset 〈benchset name〉 〈benchset attribute〉+ )

Figure 12: Concrete syntax for benchmark sets
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