
The SMT-LIB Standard: Version 1.1

Silvio Ranise
LORIA and

INRIA-Lorraine
Nancy, France

ranise@loria.fr

Cesare Tinelli
Computer Science Department

The University of Iowa
Iowa City, IA, USA

tinelli@cs.uiowa.edu

Original release date: 18 March 2005

Current release date: 12 April 2005

Abstract

The SMT-LIB initiative is an international effort, coordinated by these
authors and supported by several research groups world-wide, with the main
goal of producing an extensive on-line library of benchmarks for satisfiability
modulo theories. This paper defines syntax and semantics of the language used
by SMT-LIB for writing theory specifications and benchmarks.



Contents

0 About this Document 4
0.1 Copyright Notice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Introduction 4

2 Basic Assumptions and Structure 5
2.1 Underlying Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Background Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Background Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 The SMT-LIB Underlying Logic and Language 7
3.1 The Formula Sublanguage . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 The additional constructs . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Well-sorted formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 The SMT-LIB Theory Language 16
4.1 SMT-LIB Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 The SMT-LIB Benchmark Language 21

6 Semantics 24
6.1 Model-theoretic Semantics . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Translation Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3 Equivalence of the two Semantics . . . . . . . . . . . . . . . . . . . . 26

7 Concrete Syntax 27
7.1 Terms and formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.2 Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.3 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 Acknowledgments 31

A Abstract Syntax 33

B Concrete Syntax 36

2



List of Figures

1 Abstract syntax for unsorted terms and formulas . . . . . . . . . . . 9
2 Well-sortedness rules for terms . . . . . . . . . . . . . . . . . . . . . . 14
3 Well-sortedness rules for formulas . . . . . . . . . . . . . . . . . . . . 15
4 Abstract syntax for theories . . . . . . . . . . . . . . . . . . . . . . . 17
5 Abstract syntax for logics . . . . . . . . . . . . . . . . . . . . . . . . 19
6 Abstract syntax for benchmarks . . . . . . . . . . . . . . . . . . . . . 21
7 Translation of function declarations and terms . . . . . . . . . . . . . 25
8 Translation of formulas . . . . . . . . . . . . . . . . . . . . . . . . . . 25
9 Concrete syntax for terms . . . . . . . . . . . . . . . . . . . . . . . . 28
10 Concrete syntax for formulas . . . . . . . . . . . . . . . . . . . . . . . 29
11 Concrete syntax for theories . . . . . . . . . . . . . . . . . . . . . . . 29
12 Concrete syntax for logics . . . . . . . . . . . . . . . . . . . . . . . . 30
13 Concrete syntax for benchmarks . . . . . . . . . . . . . . . . . . . . . 30

3



0 About this Document

This paper defines and discusses Version 1.1 of a proposed language standard for the
Satisfiability Modulo Theories Library, or SMT-LIB for short.

This is an incomplete working document that will be updated on a regular basis.
Each new revision of the document, or release, will be identified by its date. It
is expected that each new release of the same version of the SMT-LIB format will
contain only error fixes or conservative additions and changes with respect to the
previous revision, that is, it will not modify any already given definitions for the
SMT-LIB format, unless they were incorrect. A new revision will only provide a
more complete and improved presentation of the format.

New versions of the SMT-LIB format, on the other hand, may contain non-
conservative changes with respect to the previous version.

To facilitate the reading of the document, explanations of the rationale of the
various design decisions taken in defining the SMT-LIB format are written in small

sans-serif font. They can be skipped on a first reading.
Since this is a working draft, it may have missing parts. Place holders for missing

material are denoted by text in square brackets.

0.1 Copyright Notice

Permission is granted to anyone to make or distribute verbatim copies of this doc-
ument, in any medium, provided that the copyright notice and permission notice
are preserved, and that the distributor grants the recipient permission for further
redistribution as permitted by this notice. Modified versions may not be made.

1 Introduction

The main goal of the SMT-LIB initiative [2], coordinated by these authors and
supported by a large number of research groups world-wide, is to produce a on-line
library of benchmarks for satisfiability modulo theories . By benchmark we mean
a logical formula to be checked for satisfiability with respect to (combinations of)
background theories of interest. Examples of background theories typically used in
computer science are the theory of real numbers, the theory of integer numbers, and
the theories of various data structures such as lists, arrays, bit vectors and so on.

A lot of work has been done in the last few years by several research groups
on building systems for satisfiability modulo theories [?]. The main motivation of
the SMT-LIB initiative is the expectation that having a library of benchmarks will
greatly facilitate the evaluation and the comparison of these systems, and advance

4



the state of the art in the field, in the same way as, for instance, the TPTP library [3]
has done for theorem proving, or the SATLIB library [1] has done for propositional
satisfiability.

SMT-LIB consists for now of two main sections: one containing the specification
of several background theories and logics (see later), and another containing bench-
marks, grouped under a number of indexes such as their corresponding background
theory/logic, the class of formulas they belong to, the type of problem they originate
from and so on. Future work on the library might also include a high level declarative
description of decision procedures for SMT-LIB logics.

For the library to be viable and useful, SMT-LIB adopts a common format for
expressing the benchmarks, and for defining the background theories in a rigorous
way—so that there is no doubt on which theories are intended.

2 Basic Assumptions and Structure

In the SMT-LIB format, input problems, i.e. logical formulas, are assumed to be
checked for satisfiability, not validity.1 In particular, given a theory T and a formula
ϕ, the problem of interest is whether ϕ is satisfiable in T , or is satisfiable modulo T ,
that is, whether there is a model of T that satisfies (the existential closure of) ϕ.

Informally speaking, SMT-LIB calls an SMT solver , or also a satisfiability pro-
cedure, any procedure for satisfiability modulo some given theory. In general, with
satisfiability procedures one can distinguish among

1. a procedure’s underlying logic (e.g., first-order, modal, temporal, second-order,
and so on),

2. a procedure’s background theory, the theory against which satisfiability is checked,
and

3. a procedure’s input language, the class of formulas the procedure accepts as
input.

For instance, in a solver for linear arithmetic the underlying logic is first-order
logic with equality, the background theory is the theory of real numbers, and the
input language is often limited to conjunctions of inequations between linear poly-
nomials.

For better clarity and modularity, the three aspects above are kept separate in
SMT-LIB. SMT-LIB’s commitments to each of them are described in the following.

1 Note that the difference matters only for those classes of problems that are not closed under
logical negation.

5



2.1 Underlying Logic

Version 1.1 of the SMT-LIB format adopts as its underlying logic a basic many-
sorted version of first-order logic with equality. This logic allows the definition of
sorts and of sorted symbols but does not allow more sophisticated constructs such
as subsorts, sort constructors, explicit sort declarations for terms, and so on. Some
of these features may be added in the future2 but only as needed.

In an attempt to combine the simplicity and familiarity of classical (i.e., unsorted)
first-order logic with the convenience of a sorted language, the SMT-LIB format
defines two semantics for its underlying logic: the first one is a translation semantics
into classical first order logic with equality (FOL= ), the second one is a direct
algebraic semantics based on many-sorted models.

The first semantics is meant to ease the transition to a sorted framework for
existing tools, expertise and results, most of which have so far been developed in
the context of classical FOL=. For the purposes of SMT-LIB the two semantics are
equivalent, as an SMT-LIB formula admits a (many-sorted) model in the algebraic
semantics if and only if its translation into FOL= admits a (unsorted) model in
FOL=.

The logic and its two semantics are specified in the rest of this document.

2.2 Background Theories

One of the goals of the SMT-LIB initiative is to clearly define a catalog of background
theories, starting with a small number of popular ones, and adding new ones as
solvers for them are developed. Theories are specified in SMT-LIB independently
of any benchmarks or solvers. Each benchmark then contains a reference to its own
background theory.

The SMT-LIB format will eventually distinguish between basic (or component)
theories and combined (or structured) theories. Basic theories will include theories
such as the theory of real numbers, the theory of arrays, the theory of lists and so
on. A combined theory will be one that is defined as some kind of combination of
basic theories.

The current version of SMT-LIB supports only basic theories. This means in
practice that a theory composed of previously defined ones can always be defined in
this version of the format, but only from scratch, as if it were a basic theory, with no
external references to its previously defined components. Support for the modular
definition of structured theories will be added in future versions of the format.

For practicality, the format insists that only the signature of a theory be specified

2 For instance, it is expected that Version 2 of the format will include subsorts.

6



formally.3 The theory itself can be defined either formally, by means of a set of
axioms, or informally, in natural language, as convenient.

2.3 Background Logics

The SMT-LIB format adopts a single and general first-order (sorted) language in
which to write all SMT-LIB benchmarks.

It is often the case, however, that many benchmarks are expressed in some frag-
ment of the language of first-order logic. The particular fragment in question does
matter because one can often write a solver specialized on that fragment that is a
lot more efficient than a solver meant for a larger fragment.4

An extreme case of this situation occurs when satisfiability modulo a given theory
T is decidable for a certain fragment (quantifier-free, say) but undecidable for a larger
one (full first-order, say), as for instance happens with the theory of arrays [?]. But
a similar situation occurs even when the decidability of the satisfiability problem is
preserved across various fragments. For instance, if T is the theory of real numbers,
the satisfiability in T of full-first order formulas is decidable. However, one can build
increasingly faster solvers by restricting the language respectively to quantifier-free
formulas, linear equations and inequations, difference equations, inequations between
variables, and so on [?].

Certain pairs of theories and input languages are very common in the field, and
are often conveniently considered as a single entity. In recognition of this practice,
the SMT-LIB format allows one to pair together a background theory and an input
language into a sublogic, or, more simply, logic. We call these pairs (sub)logics
because, intuitively, each of them defines a sublogic of SMT-LIB’s underlying logic
for restricting both the set of allowed models—to the models of the background
theory—and the set of allowed formulas—to the formulas in the input language.

3 The SMT-LIB Underlying Logic and Language

Under the SMT-LIB translation semantics, from a semantical viewpoint the ultimate
underlying logic for SMT-LIB is FOL=, the classical (unsorted) first-order logic with
equality. The external underlying logic and its language are, however, many-sorted.

As a typed language, the SMT-LIB language for formulas and theories is inten-
tionally limited in expressive power. In essence, the language allows one to declare

3 By “formal” here we will always mean written in a machine-readable and processable format,
as opposed to written in free text no matter how rigorously.

4 By efficiency here we do not necessarily refer to worst-case time complexity, but to efficiency
“in practice”.

7



sorts (types) only by means of sort symbols, to specify the interface, or rank of func-
tion and predicate symbols in terms of the declared sorts, and to specify the sort of
quantified variables.

In type theory terms, the language has no subtypes, no type constructors, no type
quantifiers, no provisions for parametric or subsort polymorphism, and so on. Even
explicit (ad-hoc) overloading of function or predicate symbols—by which a symbol
could have more than one rank—is not allowed. The idea is to provide, at least in
this version, just enough expressive power to represent typical benchmarks without
getting bogged down by the complexity of a more sophisticated type system.

3.1 The Formula Sublanguage

The syntax of formulas in the SMT-LIB language extends the standard abstract
syntax of FOL= with a construct for declaring the sort of quantified variables, plus
the following non-standard constructs:

• an if-then-else construct for terms,

• an if-then-else logical connective,

• a let construct for terms,

• a let construct for formulas, and

• a distinct construct for declaring a number of values as pairwise distinct.

• an annotation mechanism for terms and formulas.

Except for the first extension, needed to support sorts, the other extensions are
provided for greater convenience. We discuss each of them in the following.

An abstract grammar and syntax for a superset of the SMT-LIB language of
logical formulas is defined in Figure 1 by means of production rules. This is a
superset of the language because it contains ill sorted terms and formulas. The
proper well sorted subset is defined later by means of a separate sort system.

The rules assume as given the following sets of symbols:

• an infinite set X of term variables , standard first-order variables that can be
used in place of a term;

• an infinite set Ξ of formula variables , second-order variables that can be used
in place of a formula;

• the infinite set N of all numerals, for the natural numbers;

8



(Annotations) α ::= a = v

(Terms) u ::= x | n | f t∗ | ite ϕ t1 t2

(Annot. Terms) t ::= u α∗

(Connectives) κ ::= not | implies | and | or | xor | iff

(Atoms) A ::= true | false | ξ | p t∗ | = t∗ | distinct t∗

(Formulas) ψ ::= A | κ ϕ+ | ∃ (x:s)+ ϕ0 | ∀ (x:s)+ ϕ0

| let x = t in ϕ0 | flet ξ = ϕ0 in ϕ1

| if ϕ0 then ϕ1 else ϕ2

(Annot. Formulas) ϕ ::= ψ α∗

x ∈ X , the set of term variables ξ ∈ Ξ, the set of formula variables
n ∈ N , the set of numerals f ∈ F , the set of function symbols
p ∈ P , the set of predicate symbols s ∈ S, the set of sort symbols
a ∈ A, the set of attributes v ∈ V , the set of attribute values

Figure 1: Abstract syntax for unsorted terms and formulas

• an infinite set F of function symbols ;

• an infinite set P of predicate symbols ;

• an infinite set S of sort symbols ;

• an infinite set A of attribute symbols ;

• a set V of attribute values.

It is required that A be disjoint from all the other sets. The remaining sets need

not be disjoint because the syntax of terms and formula allows one to infer to which set a

particular symbol/value belongs.
In Figure 1 and later in the paper, boldface words denote terminal symbols,

parentheses are meta-symbols, used just for grouping—they are not symbols of the
abstract language. The meta-operator ( )∗ denotes as usual zero or more repetitions
of its argument, while the meta-operator ( )+ denotes one or more repetitions of its
argument. Function/predicate applications are denoted simply by juxtaposition, as
this is enough at the abstract level.

In the production rules, the letter a denotes attribute symbols, the letter v at-
tribute values, the letter x term variables, the letter ξ formula variables, the letter n

9



numerals, the letter f functions symbols, the letter p predicate symbols, the letter u
terms, the letter t annotated terms, the letter s sort symbols, the letter ψ formulas,
and the letter ϕ annotated formulas.

The given grammar does not distinguish between constant and function symbols
(they are all defined as members of the set F), and between propositional variables
and predicate symbols (they are all defined as members of the set P). These distinc-
tions are really a matter of arity, which is taken care of later by the well-sortedness
rules. A similar observation applies to the logical connectives, the members of κ
class, and the number of arguments they are allowed take.

From now on, we will simply say term to mean a possibly annotated term, and
formula to mean a possibly annotated formula.

As usual, one can speak of the free variables of a formula. Formally, The set
Var(t) of free term variables in a term t and the set Var(ϕ) of free term variables
in a formula ϕ are respectively defined below by structural induction.

Var(x) = {x}
Var(n) = ∅
Var(f t1 · · · tk) = Var(t1) ∪ · · · ∪ Var(tk)
Var(ite ϕ0 t1 t2) = Var(ϕ0) ∪ Var(t1) ∪ Var(t2)
Var(u α1 · · ·αk) = Var(u)

Var(true) = ∅
Var(false) = ∅
Var(ξ) = ∅
Var(π t1 · · · tk) = Var(t1) ∪ · · · ∪ Var(tk)

if π ∈ P ∪ {=,distinct}
Var(κ ϕ1 · · ·ϕk) = Var(ϕ1) ∪ · · · ∪ Var(ϕk)
Var(∀ x1:s1 . . . xk:sk ϕ0) = Var(ϕ0) \ {x1 . . . xk}
Var(∃ x1:s1 . . . xk:sk ϕ0) = Var(ϕ0) \ {x1 . . . xk}
Var(let x = t in ϕ0) = Var(t) ∪ (Var(ϕ0) \ {x})
Var(flet ξ = ϕ0 in ϕ1) = Var(ϕ0) ∪ Var(ϕ1)
Var(if ϕ0 then ϕ1 else ϕ2) = Var(ϕ0) ∪ Var(ϕ1) ∪ Var(ϕ2)
Var(ψ α1 · · ·αk) = Var(ψ)

The notions of free/bound occurrence of a variable and of scope of a variable’s
occurrence are defined as usual.5 Note that, also as usual, in the expression let x =
t in ϕ0, occurrences of the variable x are bound in ϕ0 but not in t.

5 See any standard text book on first-order logic.

10



The set Far(ϕ) of free formula variables in a formula ϕ is analogously defined
as follows:

Far(true) = ∅
Far(false) = ∅
Far(ξ) = {ξ}
Far(π t1 · · · tk) = ∅ if π ∈ P ∪ {=,distinct}
Far(κ ϕ1 · · ·ϕk) = Far(ϕ1) ∪ · · · ∪ Far(ϕk)
Far(∀ x1:s1 . . . xk:sk ϕ0) = Far(ϕ0)
Far(∃ x1:s1 . . . xk:sk ϕ0) = Far(ϕ0)
Far(let x = t in ϕ0) = Far(ϕ0)
Far(flet ξ = ϕ0 in ϕ1) = Far(ϕ0) ∪ (Far(ϕ1) \ {ξ})
Far(if ϕ0 then ϕ1 else ϕ2) = Far(ϕ0) ∪ Far(ϕ1) ∪ Far(ϕ2)
Far(ψ α1 · · ·αk) = Far(ψ)

In practice, the only operator that binds formula variables is flet. Similarly to
let for variables, in the expression flet ξ = ϕ0 in ϕ1, occurrences of ξ are bound in
ϕ1 but not in ϕ0.

We call a formula ϕ closed iff Var(ϕ) = Far(ϕ) = ∅.

3.2 The additional constructs

The following constructs are not usually found in standard descriptions of many-
sorted logic. While they do not extend the power of SMT-LIB’s underlying logic
beyond first order, they are convenient for representing SMT benchmarks.

The if-then-else construct for terms

This construct is very common in benchmarks coming from hardware verification.
Technically, it is a function symbol of arity 3, taking as first argument a formula and
as second and third arguments a term. Semantically, an expression like

ite(ϕ, t1, t2)

evaluates to the value of t1 in every interpretation that makes ϕ true, and to the
value of t2 in every interpretation that makes ϕ false.

Although it can be defined in terms of more basic constructs, this construct provides impor-

tant structural information that a solver may be able to use advantageously. More importantly,

for certain applications the use of ite constructs can result in an exponential reduction in

the size of a benchmark—with respect to an equivalent reformulation of the benchmark as a

formula without ites. For these reasons, the SMT-LIB format supports them natively.

11



The if-then-else logical connective

This construct is also common in verification benchmarks. It is used to build a
formula of the form

if ϕ0 then ϕ1 else ϕ2

which is semantically equivalent to the formula

(ϕ0 implies ϕ1) and (not ϕ0 implies ϕ1)

The SMT-LIB format supports this if-then-else connective natively for the same reasons it

supports the ite term constructor.

The let construct for terms

This construct builds a formula of the form

let x = t in ϕ0

which is semantically equivalent to the formula obtained from ϕ0 by simultaneously
replacing every free occurrence of x in ϕ0 by t, and renaming as necessary the bound
variables of ϕ0 so that the variables of t remain free.

The construct is convenient for benchmark compactness as it allows one to replace multiple

occurrences of the same term by a variable. It is also useful for a solver because it saves the

solver the effort of recognizing the various occurrences of the same term as such.

The let construct for formulas

This construct builds a formula of the form

flet ξ = ϕ0 in ϕ1

which is semantically equivalent to the formula obtained from ϕ1 by simultaneously
replacing every free occurrence of ξ in ϕ1 by ϕ0, and renaming as necessary the
bound variables of ϕ1 so that the free variables of ϕ0 remain free.

The rationale for supporting this construct in SMT-LIB is similar to that for supporting the

let construct for terms.

The distinct construct

This construct is also supported for conciseness. It is a variadic construct for building
formulas of the form

distinct(t1, . . . , tn)

with n ≥ 2. Semantically, it is equivalent to the conjunction of all disequations of
the form not(ti = tj) for 1 ≤ i < j ≤ n.

12



The annotation mechanism for terms and formulas

Each term or formula can be annotated with a list of attribute-value pairs of the
form

a = v

where a is an attribute’s name and v is the attribute’s value.
The syntax of attribute values is user-dependent and is therefore left unspecified

by the SMT-LIB format.
Annotations are meant to provide extra-logical information which, while not changing the

semantics of a term or formula, may be useful to a theory solver. It is expected that typical
annotations will provide operational information for the solver. For instance, the annotation α
in a formula of the form

∀ x1:s1 . . . x:sk ϕ0 α

might specify an instantiation pattern for the quantifier ∀x1:s1 . . . x:sk, as done in the Simplify

prover [?]. Or, for formulas that represent verification conditions for a program, the annotation

might contain information relating the formula to the original code the formula was derived

from.6

3.3 Well-sorted formulas

The SMT-LIB language of formulas is the largest set of well-sorted formulas con-
tained in the language generated by the production rules for annotated formulas in
the grammar of Figure 1.

Well-sorted formulas are defined by means of a set of sorting rules, similar in
format and spirit to the kind of typing rules found in the programming languages
literature. The rules are based on the following definition of a (many-sorted) signa-
ture.

Definition 1 (SMT-LIB Signature) An SMT-LIB signature Σ is a tuple consist-
ing of:

• a non-empty set ΣS ⊆ S of sort symbols, a set ΣF ⊆ F of function symbols, a
set ΣP ⊆ P of predicate symbols,

• a total mapping from the term variables X to ΣS,

• a total mapping from ΣF to (ΣS)+, the non-empty sequences of elements of ΣS,
and

• a mapping from ΣP to (ΣS)∗, the sequences of elements of ΣS.

6 A similar idea is used in the ESC/Java system with the use of a special “label” predicate [?].

13



Σ `t x : s
if x : s ∈ Σ

Σ `t n : s
if n : s ∈ Σ

Σ `t t1 : s1 · · · Σ `t tk : sk

Σ `t f t1 · · · tk : sk+1

if f : s1 · · · sk+1 ∈ Σ

Σ `f ϕ Σ `t t1 : s Σ `t t2 : s

Σ `t ite ϕ t1 t2 : s

Figure 2: Well-sortedness rules for terms

The sequence of sorts associated by Σ to a function/predicate symbol is called
the rank of the symbol.

As usual, the rank of a function symbol specifies the expected sort of the symbol’s
argument and result. Similarly for predicate symbols. Note that the sets ΣS, ΣF and
ΣP of an SMT-LIB signature are not required to be disjoint. So it is possible for a
symbol to be both a function and a predicate symbol, say. This causes no ambiguity

in the language because positional information is enough to determine during parsing if a given

occurrence of a symbol is a function, predicate or sort symbol. However, is not possible for
a function (resp. predicate) symbol to have more than one rank.7 In other words, ad
hoc overloading of function or of predicate symbols is not allowed. This restriction is

imposed mainly in order to simplify parsing and well-sortedness checking of SMT-LIB formulas.

Figure 2 provides a set of rules defining well-sorted terms, while Figure 3 provides
a rule set defining well-sorted formulas. The sort rules presuppose the existence of an
SMT-LIB signature Σ. Strictly speaking then, the SMT-LIB language is a family of
languages parametrized by Σ. As explained later, for each benchmark ϕ and theory
T , the specific signature is jointly defined by the specification of T and that of the
benchmark containing ϕ.

The format and the meaning of the sort rules in the two figures is pretty standard
and should be largely self-explanatory. The integer index k in the rules is assumed
≥ 0; the notation x:s ∈ Σ means that Σ maps the variable x to the sort s. The
notation f :s1 · · · sn+1 ∈ Σ means that f ∈ ΣF and Σ maps f to the sort sequence
s1 · · · sn+1 (and similarly for numerals and predicate symbols). The expression Σ, x:s
denotes the signature that maps x to the sort s and otherwise coincides with Σ.

7 This is a consequence of the last two mappings in the definition of SMT-LIB signature.

14



Σ `f true Σ `f false Σ `f ξ

Σ `t t1 : s1 · · · Σ `t tk : sk

Σ `f p t1 · · · tk
if p : s1 · · · sk ∈ Σ

Σ `t t1 : s · · · Σ `t tk+2 : s

Σ `f = t1 · · · tk+2

Σ `t t1 : s · · · Σ `t tk+2 : s

Σ `f distinct t1 · · · tk+2

Σ `f ϕ

Σ `f not ϕ

Σ `f ϕ1 Σ `f ϕ2

Σ `f impl ϕ1 ϕ2

Σ `f ϕ0 Σ `f ϕ1 Σ `f ϕ2

Σ `f if ϕ0 then ϕ1 else ϕ2

Σ `f ϕ1 · · · Σ `f ϕk+2

Σ `f c ϕ1 · · · ϕk+2

if c ∈ {and,or,xor, iff}

Σ, x1:s1, . . . , x:sk+1 `f ϕ

Σ `f ∃x1:s1 . . . x:sk+1 ϕ

Σ, x1:s1, . . . , x:sk+1 `f ϕ

Σ `f ∀x1:s1 . . . x:sk+1 ϕ

Σ `t t : s Σ, x : s `f ϕ

Σ `f let x = t in ϕ

Σ `f ϕ0 Σ `f ϕ1

Σ `f flet ξ = ϕ0 in ϕ1

Figure 3: Well-sortedness rules for formulas

15



A term t generated by the grammar in Figure 1 is well-sorted (with respect to Σ)
if the expression Σ `t t:s is derivable by the sort rules in Figure 2 for some sort
s ∈ ΣS. In that case, we say that t is of sort s.

A formula ϕ generated by the grammar in Figure 1 is well-sorted (with respect to
Σ) if the expression Σ `f ϕ is derivable by the sort rules in Figure 3.

Definition 2 (SMT-LIB formulas) The SMT-LIB language for formulas is the
set of all closed well-formed formulas.

Note that the SMT-LIB language for formulas contains only closed formulas.
This is mostly a technical restriction, motivated by considerations of convenience. In fact, with

a closed formula ϕ of a signature Σ the particular mapping of term variables to sorts defined

by Σ is irrelevant. The reason is that the formula itself contains its own sort declaration for

its term variables, either explicitly, for the variables bound by a quantifier, or implicitly, for the

variables bound by a let. Using only closed formulas then simplifies the task of specifying their

signature, as it becomes unnecessary to specify how the signature maps the elements of X to

the signature’s sorts.

There is no loss of generality in allowing only closed formulas because, as far as
satisfiability of formulas is concerned, every formula ϕ with free variables Var(ϕ) =
{x1, . . . , xn}, where each xi is expected to have sort si, can be rewritten as

∃ x1:s1 . . . xn:sn ϕ.

An alternative way to avoid free variables in benchmarks is defined in Section 5
A similar situation arises with formula variables. In fact, all free occurrences of

a formula variable can be replaced by a fresh predicate symbol p declared in Σ as
having empty arity.

4 The SMT-LIB Theory Language

This version of the format considers only the specification of basic background theo-
ries. Facilities for specifying structured theories may be introduced in a later version.

A theory declaration defines both a many-sorted signature for a theory and the
theory itself. The abstract syntax for a theory declaration in the SMT-LIB format
is provided in Figure 4. The syntax follows an attribute-value-based format.

In addition to the already defined symbols and syntactical categories, the pro-
duction rules in Figure 4 assume as given the following sets of symbols:

• an infinite set W of character strings, meant to contain free text;

• an infinite set T of theory symbols, used to give a name to each theory.

16



(Fun. sym. declaration) Df ::= f s+ α

(Pred. sym. declaration) Dp ::= p s∗ α

(Attribute declaration) PT ::= sorts = s+

| funs = (Df )
+ | preds = (Dp)

+

| definition = w | axioms = ϕ+

| notes = w | α

(Theory declaration) DT ::= theory T begin
(PT )+

end

T ∈ T , the set of theory symbols w ∈ W , the set of character strings

Figure 4: Abstract syntax for theories

In the rules, the letter w denotes strings and the letter T theory symbols.
The symbols funs, preds, axioms, notes, sorts, and definition are reserved

attribute symbols from A. Their sets of values are as specified in the rules. In addi-
tion to the predefined attributes, a theory declaration DT can contain an unspecified
number of user defined attributes, and their values—formalized in the grammar sim-
ply as annotations α.

The rationale for allowing user-defined attributes is the same as in other attribute-value-

based language (such as, e.g., BibTeX). It makes the SMT-LIB format more flexible and

customizable. The understanding is that user-defined attributes are allowed but need not be

supported by an SMT solver for the solver to be considered SMT-LIB compliant. We expect

however is that continued use of the SMT-LIB format will make certain user-defined attributes

widely used. Those attributes might then be officially introduced in the format (as non-user-

defined attributes) in later versions.

Note that in the abstract syntax of a theory declaration, attribute-value pairs
can appear in any order. However, they are subject to the restrictions below.

Definition 3 (Theory Declarations) The only legal theory declarations in the
SMT-LIB format are those that satisfy the following restrictions.

1. They include a declaration of the attributes sorts and definition8.

2. They contain at most one declaration per attribute.

8 Which makes those attributes non-optional.

17



3. They contain at most one declaration for the same function or predicate symbol.

4. All sorts in function/predicate symbol declarations are listed in the sort at-
tribute declaration.

5. The definition of the theory, however provided in the definition attribute,
refers only to the declared sort, function and predicate symbols.

6. The formulas in the axioms attribute are built over the symbols declared in the
sort, funs and pred attributes.

The first restriction is explained in the following. The second restriction is just to sim-

plify later the definition of a declaration semantics, and the automated processing of theory

declarations.

Some attributes, such as definition for instance, are informal attributes in the
sense that their value (w) is free text. Ideally, a formal specification of the given free-text

attributes would be preferable to free text in order to avoid ambiguities and misinterpretation.

The choice of using free text for these attributes is motivated by practicality reasons. In fact,

(i) these attributes are meant to be read by human readers, not programs, and (ii) the amount

of effort needed to first devise a formal language for these attributes and then specify their

values for each theory in the library does not seem justified by the current goals of SMT-LIB.

The signature of a theory is defined by the attributes sorts, funs and preds in
the obvious way. A declaration Df for a function symbol f specifies the symbol’s
rank, and may contain additional, user-defined annotations. A typical annotation
might specify that f is associative, say. While this property is expected to be specified

also in the definition of the theory (or to be a consequence thereof), an explicit declaration at

this point could be useful for certain solvers that treat associative symbols in a special way.

Similarly, a declaration Dp for a predicate symbol p specifies the symbol’s rank, and
may be augmented with user-defined annotations.

This version of the format does not specify any predefined annotations for func-
tion and predicate symbols. Future versions might do so, depending on the recom-
mendations and the feedback of the SMT-LIB user community.

The funs and preds attributes are optional because a theory might lack function
or predicate symbols. The sorts attribute, however, is not optional because sorted
frameworks require the existence of at least one sort. This is no real limitation of course

because, for instance, any unsorted theory can be always seen as at least one-sorted.

The non-optional definition attribute is meant to contain a natural language
definition of the theory. While this definition is expected to be as rigorous as possible,
it does not have to be a formal one. Some theories (like the theory of real numbers)
are well known, and so just a reference to their common name might be enough. For
theories that have a small set of axioms (or axiom schemas), it might be convenient

18



(Attribute declaration) PL ::= theory = T | language = w
| extensions = w | notes = w | α

(Logic declaration) DL ::= logic L begin
(PL)+

end

L ∈ L, the set of logic symbols

Figure 5: Abstract syntax for logics

to list the actual axioms. For some other theories, a mix of formal notation and
informal explanation might be more appropriate.

Formal, first-order axioms that define part of or a whole theory can be addition-
ally provided in the optional axioms attribute as a list of SMT-LIB formulas. In

addition to being more rigorous, the formal definition of (a part of) a theory provided in the

axioms attribute, is useful for solvers that might not have (that part of) the theory built in,

but accept theory axioms input. In essence, this is currently the case for instance for the solvers

Simplify [?], CVC Lite [?], haRVey [?], and Argo-lib [?].

The optional attribute notes is meant to contain documentation information
such as authors, date, version, etc. of a specification.

4.1 SMT-LIB Logics

The SMT-LIB format allows the explicit definition of sublogics of its main logic—
many-sorted first-order logic with equality—that restrict both the main logic’s syntax
and semantics. A new (sub)logic is defined in the SMT-LIB language by a logic
declaration whose abstract syntax is provided in Figure 5.

In addition to the already defined symbols and syntactical categories, the pro-
duction rules in Figure 4 assume as given an infinite set L of logic symbols, used to
give a name to each logic. In the rules, the letter L denotes logic symbols.

The symbols theory, language, extensions, and notes are reserved attribute
symbols from A. Their sets of values are as specified in the rules. As for theories,
a logic declaration DL can contain an unspecified number of user defined attributes,
and their values—formalized in the grammar simply as annotations α.

Definition 4 (Logic Declarations) The only legal logic declarations in the SMT-
LIB format are those that satisfy the following restrictions:

1. They include a declaration of the attributes theory and language.

19



2. They contain at most one declaration per attribute.

3. The value of the attribute theory coincides with the name of a theory T for
some theory declaration DT in SMT-LIB;

The text attribute notes serves the same purpose as in theory declarations.
The attribute theory refers to a theory T in SMT-LIB. As we will see, the effect

of this attribute is to declare that the logic’s sort, function and predicate symbols are
restricted to those in the signature of T , and that the logic’s semantics is restricted
to the models of T .

The attribute language describes in free text the logic’s language, that is, the
specific subset of SMT-LIB formulas that are allowed in the logic. As explained in
Section 2.3, this information is useful for tailoring solvers to the specific sublanguage
of formulas used in a set of benchmarks. The attribute is text valued because it has mostly

documentation purposes for the benefit of benchmark users. A natural language description of

the logic’s language seems therefore adequate for this purpose. However, we expect that the

language will be at least partially specified in some formal fashion in this attribute, for instance

by using BNF rules.

It is understood that the formulas in the logic’s language are built over the
signature Σ of the associated theory unless this signature is explicitly expanded in
the text of attribute language with new9 symbols. In that case, the text must
explicitly indicate which new sort, function or predicate symbols are included in the
expansion. See later for why it is convenient to expand the language with free symbols.

In effect then, an SMT-LIB logic’s language is really parametric in such a signature
expansion.

The optional attribute extensions is meant to document any notational conven-
tions, or syntactic sugar, allowed in formulas of this logic—and hence in benchmarks
for the logic. This is useful because in common practice the syntax of a logic is often

extended for convenience with syntactic sugar.

One example of a logic declaration that uses the attributes theory, language
and extensions is what we could call linear Presburger arithmetic. In this logic,
the theory T is the theory of natural numbers with signature {0, s,+, <} (s for
the successor function) as axiomatized by Presburger [?]. The language is the set
of boolean combinations of atomic formulas over this signature expanded with an
infinite number of free constants. Examples of syntactic conventions defined in the
extension attribute could be the use of a numeral n for the n-fold application of s
to 0, and the use of the expression n ∗ t for the term t+ · · ·+ t︸ ︷︷ ︸

n times

.

9 That is, uninterpreted, or free, in logic parlance.

20



(Formula status) σ ::= sat | unsat | unknown

(Attribute-value pair) Pb ::= logic = L | formula = ϕ | status = σ
| assumption = ϕ | extrasorts = s+

| extrafuns = (Df )
+ | extrapreds = (Dp)

+

| notes = w | α

(Benchmark declaration) Db ::= benchmark b begin
(Pb)

+

end

b ∈ B, the set of benchmark symbols

Figure 6: Abstract syntax for benchmarks

Note that function or predicate symbols introduced as syntactic sugar are not
formally defined in the funs or pred symbols, or anywhere else. In a sense, syntactic
sugar does not officially exist, even if it is allowed in benchmarks for convenience.
This deficiency of the SMT-LIB language, which is meant to be resolved in future versions,

is mostly due to the impossibility of (formally) defining an infinite signature at the moment.

That is why, for instance, in the example above numerals are introduced as syntactic sugar for

ground terms over {s, 0}.

5 The SMT-LIB Benchmark Language

In SMT-LIB, a benchmark is a closed SMT-LIB formula with attached additional
information, specified in a benchmark declaration. In addition to the formula itself, a
benchmark declaration contains a reference to its background logic, and an optional
specification of additional sort, function and predicate symbols.

The abstract syntax for a benchmark declaration in the SMT-LIB format is
provided in Figure 6. In addition to the already defined symbols and syntactical
categories, the production rules in the figure assume as given an infinite set B of
benchmark symbols, used to give a name to each benchmark. In the rules, the letter
b denotes benchmark symbols.

The symbols assumption, formula, status, logic, extrasorts, extrafuns,
extrapreds, and notes are reserved attribute symbols from A. Their sets of values
are as specified in the rules. As before, benchmark declarations can also contain
user-defined attributes and their values—formalized again as annotations α.

21



Definition 5 (Benchmark Declarations) The only legal benchmark declarations
in the SMT-LIB format are those that satisfy the following restrictions.

1. They contain exactly one declaration of the attributes logic, formula and
status.

2. The value of the attribute logic coincides with the name of a logic L for some
logic declaration DL in SMT-LIB.

3. The declarations of the extrasort (resp., extrafuns, extrapreds) attribute,
which can be more than one, collectively contain no more than one occurrence
of the same sort (resp., function, predicate) symbol.

4. Every symbol declared in the extrasorts, extrafuns, and extrapreds at-
tributes must be part of the signature expansion defined in the language at-
tribute of the logic L.

5. No symbol declared in a extrasorts (resp., extrafuns, extrapreds) attribute
is also declared in a sort attribute (resp., funs, preds) of the theory declaration
associated to DL.

6. The sort symbols occurring in declarations of extrafuns or extrapreds are
either declared in extrasorts or belong to the signature of the logic L;

7. The formulas in the assumption or formula attributes are in the language
of L, and their free symbols are only among those declared in the attributes
extrasorts, extrafuns and extra preds.

In a benchmark declaration of the form:

benchmark b begin
logic = L
assumption = ϕ1

...
assumption = ϕn

formula = ϕ
status = σ

end

with n ≥ 0, the formulas ϕ1, . . . , ϕn and ϕ together constitute the benchmark. For
ease of reference, let us refer to L as the background logic for the benchmark, and to
the theory contained in L’s declaration as the background theory. The intended test
is whether the formula ϕ is satisfiable in the background logic under the assumptions

22



ϕ1, . . . , ϕn; in other words, whether the formula (and ϕ1 · · ·ϕn ϕ) is satisfiable in
the background theory. Clearly, a benchmark with assumptions ϕ1, . . . , ϕn and main

formula ϕ could also be given as the semantically equivalent formula (and ϕ1 · · ·ϕn ϕ) with

no assumptions. The rationale for the assumption attribute is entirely operational. Many

SMT solvers can process assumptions more efficiently if they are explicitly identified as such,

as opposed to given together with the query formula ϕ. We call (and ϕ1 · · ·ϕn ϕ) the
formula of the benchmark.

The attribute status of a benchmark declaration records whether the bench-
mark’s formula is known to be (un)satisfiable in the associated background theory.
Knowing about the satisfiability of a benchmark is useful for debugging solvers based on sound

and complete procedures, or for evaluating the accuracy of solvers based on unsound or incom-

plete procedures.

The extrasorts attribute complements the sorts attribute of the background
theory’s declaration by declaring additional sort symbols. The extrafuns attribute
complements the funs attribute of the theory declaration with additional function
symbols with their rank. The extrapreds attribute has a similar purpose, but for
predicate symbols. In contrast with the symbols defined in the extensions attribute
of a logic declaration, which are defined in terms of the symbols in the background
theory, the symbols in extrasorts, extrafuns and extrapreds are “uninterpreted”
in the theory. See Section 6 for a rigorous definition of what it means for a symbol
to be uninterpreted in SMT-LIB.

Uninterpreted function or predicate symbols are found often in applications of satisfiability

modulo theories, typically as a consequence of Skolemization or abstraction transformations

applied to more complex formulas. Hence theory solvers typically accept formulas containing

uninterpreted symbols in addition to the symbols of their background theory. The extrasorts,
extrafuns and extrapreds attributes serve to declare any uninterpreted symbols occurring

in the benchmark’s formulas. The values of the extrafuns, extrafuns and extrapreds
attributes are specified formally because, in effect, they dynamically expand the signature of

the associated background theory, hence it is convenient for them to be directly readable by

satisfiability procedures for that theory.

The extrafuns attribute is also useful for specifying benchmarks consisting of
formulas with free term variables (such as quantifier-free formulas). As discussed in
Section 3.3, the legal formulas of SMT-LIB do not contain free variables. One way
to circumvent this restriction is to close formulas existentially. Another one is to
replace each free term variable by a fresh constant symbol of the appropriate sort.
In the second case, these extra constant symbols can be declared in the extrafuns
attribute. A similar situation can occur in principle with free formula variables,
which can stand for unspecified predicates. Each free occurrence of a formula variable
can be replaced by a fresh predicate symbol of empty arity (a.k.a, a propositional
variable). Such symbols can be declared in the extrapreds attribute.

23



Note that all sort, function or predicate symbols occurring in benchmarks must
be declared either in the background theory specification or in the extrasorts,
extrafuns and extrapreds attributes. One could think of relaxing this restriction

by adopting the convention that any undeclared function or predicate symbol occurring in a

benchmark is automatically considered as uninterpreted. Contrary to unsorted logics, how-

ever, this approach is not feasible in SMT-LIB because it may not be possible in general to

automatically infer (the sorts in) the rank of an undeclared symbol.

6 Semantics

In this section, we define precisely the notion of satisfiability modulo theories for
SMT-LIB benchmarks. We do that in two alternative ways.

In the first, we associate with each benchmark a set of many-sorted structures
(i.e., first-order models) and say that a benchmark is satisfiable modulo its back-
ground theory if its formula is satisfiable in at least one of these structures in the
standard sense of many-sorted logic. In the second, we associate with each bench-
mark a formula in classical (unsorted) FOL= that depends on the benchmark’s for-
mula and background theory, and say that a benchmark is satisfiable modulo its
background theory if the associated unsorted formula has a model in the classical
sense. We will show later that, for background theories specified by a set of sentences,
the two alternative semantics are equivalent.

6.1 Model-theoretic Semantics

[to do: definition of many-sorted structure, valuation, satisfiability in a structure,
model, etc.]

Let L be an SMT-LIB logic and T its associated background theory. If Σ is the
signature of T , let ϕ be a closed formula in L’s language having signature Ω ⊇ Σ.
We say that ϕ is satisfiable in L or, equivalently that it is satisfiable in T iff ϕ is
satisfiable in some Ω-model of T .

Note that for any set A of axioms for T , the definition above is equivalent to say
that ϕ is satisfiable in T iff the set of closed formulas A ∪ {ϕ} has a model.

6.2 Translation Semantics

One semantics for SMT-LIB formulas and theories is provided by a translation of
formulas and their signatures into formulas of FOL=, classical first order logic with
equality.

24



Function declarations

(f : s1 · · · sk+1)
τ = ∀x1, . . . , xn. (s1(x1) ∧ · · · ∧ sk(xn) ⇒ sk+1(f(x1, . . . , xk)))

ite-free Terms

xτ = x
nτ = n
(f t1 · · · tk)τ = f(t1

τ , . . . , tk
τ )

(u α1 · · ·αk)
τ = uτ

Figure 7: Translation of function declarations and terms

Formulas

falseτ = ⊥
trueτ = ¬⊥
(π t1 · · · tk)τ = π(t1

τ , . . . , tk
τ )

if π ∈ P ∪ {=,distinct} and t1, . . . , tk are ite-free
(A[ite ϕ t1 t2])

τ = (ϕτ ⇒ (A[t1])
τ ) ∧ (¬ϕτ ⇒ (A[t2])

τ )
(not ϕ)τ = ¬ϕ1

τ

(implies ϕ1 ϕ2)
τ = ϕ1

τ ⇒ ϕk
τ

(and ϕ1 · · ·ϕk)
τ = ϕ1

τ ∧ · · · ∧ ϕk
τ

(or ϕ1 · · ·ϕk)
τ = ϕ1

τ ∨ · · · ∨ ϕk
τ

(xor ϕ1 · · ·ϕk)
τ = ϕ1

τ ⊕ · · · ⊕ ϕk
τ

(iff ϕ1 · · ·ϕk)
τ = ϕ1

τ ⇔ · · · ⇔ ϕk
τ

(if ϕ0 then ϕ1 else ϕ2)
τ = (ϕ0

τ ⇒ ϕ1
τ ) ∧ (¬ϕ0

τ ⇒ ϕ2
τ )

(∀ x1:s1 . . . xk:sk ϕ0)
τ = ∀ x1, . . . , xk. (s1(x) ∧ · · · ∧ sk(xk) ⇒ ϕ0

τ )
(∃ x1:s1 . . . xk:sk ϕ0)

τ = ∃ x1, . . . , xk. (s1(x) ∧ · · · ∧ sk(xk) ∧ ϕ0
τ )

(let x = t in ϕ)τ = (ϕ′{x 7→ t})τ

(flet ξ = ϕ0 in ϕ)τ = (ϕ′{ξ 7→ ϕ0})τ

(ψ α1 · · ·αk)
τ = ψτ

Figure 8: Translation of formulas

25



We define a translation operator τ , following a well-known relativization pro-
cess for translating many-sorted logics into classical logic which turns sort symbols
into predicate symbols—see for instance [?, ?]. Formally, the SMT-LIB translation
semantics is defined as follows.

Definition 6 Let Σ be an SMT-LIB signature and let T be a theory of signature
Σ axiomatized by a set Ax of (SMT-LIB) formulas. For every Σ-formula ψ we say
that ψ is satisfiable in T iff the set

{(f : s1 · · · sk+1)
τ | f : s1 · · · sk+1 ∈ ΣF} ∪ {ϕτ | ϕ ∈ Ax} ∪ {ψτ}

of FOL= formulas is satisfiable (in the classical sense).

The signature Σ and the axioms Ax in the definition above are meant to be
elicited, as expected, from the specification of a benchmark containing the formula
ψ, and from the specification of the benchmark’s background logic and theory.

A fine point to note about our translation semantics is that it effectively requires
the given background theory to be defined axiomatically—so that one can identify
the set Ax needed in Definition 6.

The translation operator τ is defined in Figure 7 for function symbol declara-
tions and terms, and in Figure 8 for formulas. The translation into FOL= uses a
conventional syntax for FOL= sentences, with the exclusive or connective denoted
by ⊕. On terms, the operator τ is defined only for terms that do not contain ite
expressions. Occurrences of ite’s are eliminated from terms as shown in Figure 8. It
is easy to show that τ is well defined.

In Figure 8, ϕ′ denotes a rectified version of ϕ obtained by renaming apart all
quantifiers—and their bound variables—into fresh variables, while ϕ′{x 7→ t} denotes
the formula obtained from ϕ′ by simultaneously replacing every unbound occurrence
of the variable x in ϕ′ by the term t.10 Similarly for ϕ′{ξ 7→ ϕ0}. The expression
A[ite ϕ t1 t2] denotes an atomic formula A containing an occurrence of the term
(ite ϕ t1 t2), while A[ti] (i = 1, 2) denotes the formula obtained from A[ite ϕ t1 t2]
be replacing that occurrence of (ite ϕ t1 t2) with ti.

6.3 Equivalence of the two Semantics

[to do]

10 This is to keep the (free) variables of t from becoming bound after the substitution.

26



7 Concrete Syntax

This section defines and explains the concrete syntax of the whole STM-LIB lan-
guage. The adopted syntax is attribute-based and Lisp-like. Its design was driven
more by the goal of simplifying parsing than facilitating human readability. Pre-

ferring ease of parsing over readability is reasonable in this context because it is expected not

only that SMT-LIB benchmarks will be typically read by solvers but also that, by and large,

they will be produced in the first place by automated tools like verification condition generators

or translators from other formats. An alternative concrete syntax, more readable for
human users, and a translation from the current concrete syntax might be defined
in a later version of the format. Another translation of the format, this time into
XML syntax, is also planned for inclusion in the next version. We also plan to make

SMT-LIB benchmarks available in XML format, to facilitate their use further.

In the BNF-style production rules that define the concrete syntax, terminal sym-
bols are denoted by sequences of characters in typewriter font. Syntactical cate-
gories are denoted by text in angular braces and slanted font. For simplicity, white
space symbols are not modeled in the rules. It is understood though that, as usual,
every two successive terminals in an actual expression must be separated by one or
more white space characters, unless one of them is a parenthesis.11

The syntactical category 〈user value〉, used in the following concrete grammar
specifications for the value of user-defined annotations or attributes, is left under-
specified in this document. The specification of the precise format of a particular
user defined value is intentionally left to the user who decides to introduce the new
attribute. The only constraint imposed on a user-defined value is that it start with
an open brace and end with closed brace. The reason for the enclosing braces is that user-

defined attributes are not part of the official SMT-LIB format. A system compliant with the

format is only required to accept them as input, but need not support any of them. Now, user

defined attribute names are easily parsed (and possibly ignored) because they have the same

format as predefined attributes but are not predefined. User-defined values are easily parsed

(and possibly ignored) because they are enclosed in braces. For increased flexibility, we
follow the common practice of allowing C-style escape sequences. More concretely,
the open and closed brace characters can occur within a user value provided they are
preceded by the backslash symbol (\{ \}). A similar convention applies to the value
of text attributes, which are enclosed in double quotes (\"). There, escaped double
quotes are allowed in the text. To simplify the concrete language specification below,
we treat the sequences \{, \} and \" as single characters.

As with the abstract syntax, the production rules of the concrete syntax define
a superset of the legal expressions. The subset of legal expressions is the one that

11 The set of concrete terminal symbols includes the open and closed parenthesis symbols.

27



〈identifier〉 ::= a sequence of letters, digits, dots (.), single quotes (’), and
underscores ( ), starting with a letter

〈user value〉 ::= any sequence of printable characters other than braces ({ }),
and enclosed in braces

〈numeral〉 ::= a non-empty sequence of digits

〈var〉 ::= ?〈identifier〉
〈fvar〉 ::= $〈identifier〉
〈attribute〉 ::= :〈identifier〉
〈ar symb〉 ::= a non-empty sequence of the characters:

=, <, >, &, @, #, +, -, *, /, %, |, ~

〈fun symb〉 ::= 〈identifier〉 | 〈ar symb〉 | 〈numeral〉
〈pred symb〉 ::= 〈identifier〉 | 〈ar symb〉 | distinct

〈sort symb〉 ::= 〈identifier〉
〈annotation〉 ::= 〈attribute〉 | 〈attribute〉 〈user value〉
〈base term〉 ::= 〈var〉 | 〈fun symb〉
〈an term〉 ::= 〈base term〉 | ( 〈base term〉 〈annotation〉+ )

| ( 〈fun symb〉 〈an term〉+ 〈annotation〉∗ )

| ( ite 〈an formula〉 〈an term〉 〈an term〉 〈annotation〉∗ )

Figure 9: Concrete syntax for terms

satisfies the same constraints defined for the abstract syntax.

7.1 Terms and formulas

The concrete syntax for SMT-LIB unsorted terms and formulas is given in Figure 9
and Figure 10 with BNF production rules based on the abstract syntax rules given
in Figure 1.

7.2 Theories

The concrete syntax for SMT-LIB theory and logic declarations is given in Figure 11
and Figure 12 with BNF production rules based on the abstract syntax rules given
in Figure 4 and Figure 5.

28



〈prop atom〉 ::= true | false | 〈fvar〉 | 〈pred symb〉
〈an atom〉 ::= 〈prop atom〉 | ( 〈prop atom〉 〈annotation〉+ )

| ( 〈pred symb〉 〈an term〉+ 〈annotation〉∗ )

〈connective〉 ::= not | implies | if then else

| and | or | xor | iff

〈quant symb〉 ::= exists | forall

〈quant var〉 ::= ( 〈var〉 〈sort symb〉 )
〈an formula〉 ::= 〈an atom〉

| ( 〈connective〉 〈an formula〉+ 〈annotation〉∗ )

| ( 〈quant symb〉 〈quant var〉+ 〈an formula〉 〈annotation〉∗ )

| ( let ( 〈var〉 〈an term〉 ) 〈an formula〉 〈annotation〉∗ )

| ( flet ( 〈fvar〉 〈an formula〉 ) 〈an formula〉 〈annotation〉∗ )

Figure 10: Concrete syntax for formulas

〈string〉 ::= any sequence of characters other than double quotes ("),
and enclosed in double quotes

〈fun symb decl〉 ::= ( 〈fun symb〉 〈sort symb〉+ 〈annotation〉∗ )

〈pred symb decl〉 ::= ( 〈pred symb〉 〈sort symb〉∗ 〈annotation〉∗ )

〈theory name〉 ::= 〈identifier〉
〈theory attribute〉 ::= :sorts ( 〈sort symb〉+ )

| :funs ( 〈fun symb decl〉+ )

| :preds ( 〈pred symb decl〉+ )

| :definition 〈string〉
| :axioms ( 〈an formula〉+ )

| :notes 〈string〉
| 〈annotation〉

〈theory〉 ::= ( theory 〈theory name〉 〈theory attribute〉+ )

Figure 11: Concrete syntax for theories

29



〈logic name〉 ::= 〈identifier〉
〈logic attribute〉 := :theory 〈theory name〉

| :language 〈string〉
| :extensions 〈string〉
| :notes 〈string〉
| 〈annotation〉

〈logic〉 ::= ( logic 〈logic name〉 〈logic attribute〉+ )

Figure 12: Concrete syntax for logics

〈status〉 ::= sat | unsat | unknown

〈bench name〉 ::= 〈identifier〉
〈bench attribute〉 ::= :logic 〈logic name〉

| :assumption 〈an formula〉
| :formula 〈an formula〉
| :status 〈status〉
| :extrasorts ( 〈sort symb〉+ )

| :extrafuns ( 〈fun symb decl〉+ )

| :extrapreds ( 〈pred symb decl〉+ )

| :notes 〈string〉
| 〈annotation〉

〈benchmark〉 ::= ( benchmark 〈bench name〉 〈bench attribute〉+ )

Figure 13: Concrete syntax for benchmarks

7.3 Benchmarks

The concrete syntax for SMT-LIB benchmark declarations is given in Figure 13 with
BNF production rules based on the abstrat syntax rules given in Figure 6.

Legal benchmarks have to satisfy the following requirements in addition to the
requirements corresponding to those imposed on the abstract syntax.

• The :extrasorts, :extrafuns and :extrapreds attributes cannot occur be-
fore the :logic attribute.

• Every sort symbol occurring in a declaration of the :extrafuns or :extrapreds
attribute must occur in a previous declaration of the :extrasorts attribute.

• Declarations of the :assumption or :formula attribute cannot occur before
the declaration of the :logic attribute.

30



• Every sort (resp., function, predicate) symbol occurring in a declaration of the
:assumption or :formula attribute must occur in a previous declaration of
the :extrasorts (resp., :extrafuns, :extrapreds) attribute.

The ordering constraints above are imposed to simplify parsing. In fact, alternative orderings

of the attributes (for instance those in which the :extrafuns attribute occurs before the

:logic or the :extrasorts attribute) may create forward references that then require look-

ahead or multiple passes to be resolved.

7.4 Comments

Source files containing SMT-LIB expressions may contain comments in the sense of
programming languages. In SMT-LIB, a comment is a sequence of characters that
starts with the character ; and is terminated by a new line character. The choice of

; as the comment character is simply for consistency with the Lisp-like flavor of the concrete

syntax.

8 Acknowledgments

The SMT-LIB initiative was established in response to a call by Alessandro Ar-
mando at the FroCoS 2002 business meeting for a library of benchmarks for the
SMT community.

The following people (in alphabetical order) have provided suggestions, comments
and feedback on the SMT-LIB initiative and format: Peter Andrews, Alessandro
Armando, Clark Barrett, Sergey Berezin, Alessandro Cimatti, Joseph Kiniry, Sava
Krstic, Predrag Janičić, Shuvendu Lahiri, José Meseguer, Leonardo de Moura, Greg
Nelson, Harald Ruess, Geoff Satcliffe, James Saxe, Roberto Sebastiani, Natarajan
Shankar, Aaron Stump, and Andrei Voronkov. Special thanks go to Clark Barrett
and Aaron Stump for the amount and the depth of their feedback.

The following people have provided suggestions, comments and feedback on this
document: Clark Barrett, Mike DeCoster, and Michael Schidlowsky.

We apologize in advance to those people we may have inadvertently left out of
these lists.

31



References

[1] Holger Hoos and Thomas Stützle. SATLIB–The Satisfiability Library. Web site
at: http://www.satlib.org/.

[2] Silvio Ranise and Cesare Tinelli. SMT-LIB–The Satisfiability Modulo Theories
Library. Web site at: http://combination.cs.uiowa.edu/smtlib/.

[3] Geoff Sutcliffe and Christian Suttner. The TPTP Problem Library for Automated
Theorem Proving. Web site at: http://www.cs.miami.edu/~tptp/.

32



A Abstract Syntax

Terms and formulas

(Annotations) α ::= a = v

(Terms) u ::= x | n | f t∗ | ite ϕ t1 t2

(Annot. Terms) t ::= u α∗

(Connectives) κ ::= not | implies | and | or | xor | iff

(Atoms) A ::= true | false | ξ | p t∗ | = t∗ | distinct t∗

(Formulas) ψ ::= A | κ ϕ+ | ∃ (x:s)+ ϕ0 | ∀ (x:s)+ ϕ0

| let x = t in ϕ0 | flet ξ = ϕ0 in ϕ1

| if ϕ0 then ϕ1 else ϕ2

(Annot. Formulas) ϕ ::= ψ α∗

x ∈ X , the set of term variables ξ ∈ Ξ, the set of formula variables
n ∈ N , the set of numerals f ∈ F , the set of function symbols
p ∈ P, the set of predicate symbols s ∈ S, the set of sort symbols
a ∈ A, the set of attributes v ∈ V, the set of attribute values

Well-sorting rules for terms

Σ `t x : s
if x : s ∈ Σ

Σ `t n : s
if n : s ∈ Σ

Σ `t t1 : s1 · · · Σ `t tk : sk

Σ `t f t1 · · · tk : sk+1

if f : s1 · · · sk+1 ∈ Σ

Σ `f ϕ Σ `t t1 : s Σ `t t2 : s

Σ `t ite ϕ t1 t2 : s

33



Well-sorting rules for formulas

Σ `f true Σ `f false Σ `f ξ

Σ `t t1 : s1 · · · Σ `t tk : sk

Σ `f p t1 · · · tk
if p : s1 · · · sk ∈ Σ

Σ `t t1 : s · · · Σ `t tk+2 : s

Σ `f = t1 · · · tk+2

Σ `t t1 : s · · · Σ `t tk+2 : s

Σ `f distinct t1 · · · tk+2

Σ `f ϕ

Σ `f not ϕ

Σ `f ϕ1 Σ `f ϕ2

Σ `f impl ϕ1 ϕ2

Σ `f ϕ0 Σ `f ϕ1 Σ `f ϕ2

Σ `f if ϕ0 then ϕ1 else ϕ2

Σ `f ϕ1 · · · Σ `f ϕk+2

Σ `f c ϕ1 · · · ϕk+2

if c ∈ {and,or,xor, iff}

Σ, x1:s1, . . . , x:sk+1 `f ϕ

Σ `f ∃x1:s1 . . . x:sk+1 ϕ

Σ, x1:s1, . . . , x:sk+1 `f ϕ

Σ `f ∀x1:s1 . . . x:sk+1 ϕ

Σ `t t : s Σ, x : s `f ϕ

Σ `f let x = t in ϕ

Σ `f ϕ0 Σ `f ϕ1

Σ `f flet ξ = ϕ0 in ϕ1

Theories

(Fun. sym. declaration) Df ::= f s+ α

(Pred. sym. declaration) Dp ::= p s∗ α

(Attribute declaration) PT ::= sorts = s+

| funs = (Df )+ | preds = (Dp)+

| definition = w | axioms = ϕ+

| notes = w | α

(Theory declaration) DT ::= theory T begin
(PT )+

end

T ∈ T , the set of theory symbols w ∈ W, the set of character strings

34



Logics

(Attribute declaration) PL ::= theory = T | language = w

| extensions = w | notes = w | α

(Logic declaration) DL ::= logic L begin
(PL)+

end

L ∈ L, the set of logic symbols

Benchmarks

(Formula status) σ ::= sat | unsat | unknown

(Attribute-value pair) Pb ::= logic = L | formula = ϕ | status = σ

| assumption = ϕ | extrasorts = s+

| extrafuns = (Df )+ | extrapreds = (Dp)+

| notes = w | α

(Benchmark declaration) Db ::= benchmark b begin
(Pb)+

end

b ∈ B, the set of benchmark symbols

35



B Concrete Syntax

Reserved symbols and keywords

=, and, benchmark, distinct, exists, false, flet, forall, if then else, iff, implies,
ite, let, logic, not, or, sat, theory, true, unknown, unsat, xor.

Predefined attributes

:assumption, :axioms, :defintion, :extensions, :formula, :funs, :extrafuns, :extrasorts,
:extrapreds. :language, :logic, :notes, :preds, :sorts, :status, :theory.

Terms

〈identifier〉 ::= a sequence of letters, digits, dots (.), single quotes (’), and
underscores ( ), starting with a letter

〈user value〉 ::= any sequence of printable characters other than braces ({ }),
and enclosed in braces

〈numeral〉 ::= a non-empty sequence of digits

〈var〉 ::= ?〈identifier〉
〈fvar〉 ::= $〈identifier〉
〈attribute〉 ::= :〈identifier〉
〈ar symb〉 ::= a non-empty sequence of the characters:

=, <, >, &, @, #, +, -, *, /, %, |, ~

〈fun symb〉 ::= 〈identifier〉 | 〈ar symb〉 | 〈numeral〉
〈pred symb〉 ::= 〈identifier〉 | 〈ar symb〉 | distinct

〈sort symb〉 ::= 〈identifier〉
〈annotation〉 ::= 〈attribute〉 | 〈attribute〉 〈user value〉
〈base term〉 ::= 〈var〉 | 〈fun symb〉
〈an term〉 ::= 〈base term〉 | ( 〈base term〉 〈annotation〉+ )

| ( 〈fun symb〉 〈an term〉+ 〈annotation〉∗ )
| ( ite 〈an formula〉 〈an term〉 〈an term〉 〈annotation〉∗ )

36



Formulas

〈prop atom〉 ::= true | false | 〈fvar〉 | 〈pred symb〉
〈an atom〉 ::= 〈prop atom〉 | ( 〈prop atom〉 〈annotation〉+ )

| ( 〈pred symb〉 〈an term〉+ 〈annotation〉∗ )

〈connective〉 ::= not | implies | if then else
| and | or | xor | iff

〈quant symb〉 ::= exists | forall

〈quant var〉 ::= ( 〈var〉 〈sort symb〉 )
〈an formula〉 ::= 〈an atom〉

| ( 〈connective〉 〈an formula〉+ 〈annotation〉∗ )
| ( 〈quant symb〉 〈quant var〉+ 〈an formula〉 〈annotation〉∗ )
| ( let ( 〈var〉 〈an term〉 ) 〈an formula〉 〈annotation〉∗ )
| ( flet ( 〈fvar〉 〈an formula〉 ) 〈an formula〉 〈annotation〉∗ )

Theories

〈string〉 ::= any sequence of characters other than double quotes ("),
and enclosed in double quotes

〈fun symb decl〉 ::= ( 〈fun symb〉 〈sort symb〉+ 〈annotation〉∗ )

〈pred symb decl〉 ::= ( 〈pred symb〉 〈sort symb〉∗ 〈annotation〉∗ )

〈theory name〉 ::= 〈identifier〉
〈theory attribute〉 ::= :sorts ( 〈sort symb〉+ )

| :funs ( 〈fun symb decl〉+ )
| :preds ( 〈pred symb decl〉+ )
| :definition 〈string〉
| :axioms ( 〈an formula〉+ )
| :notes 〈string〉
| 〈annotation〉

〈theory〉 ::= ( theory 〈theory name〉 〈theory attribute〉+ )

37



Logics

〈logic name〉 ::= 〈identifier〉
〈logic attribute〉 := :theory 〈theory name〉

| :language 〈string〉
| :extensions 〈string〉
| :notes 〈string〉
| 〈annotation〉

〈logic〉 ::= ( logic 〈logic name〉 〈logic attribute〉+ )

Benchmarks

〈status〉 ::= sat | unsat | unknown

〈bench name〉 ::= 〈identifier〉
〈bench attribute〉 ::= :logic 〈logic name〉

| :assumption 〈an formula〉
| :formula 〈an formula〉
| :status 〈status〉
| :extrasorts ( 〈sort symb〉+ )
| :extrafuns ( 〈fun symb decl〉+ )
| :extrapreds ( 〈pred symb decl〉+ )
| :notes 〈string〉
| 〈annotation〉

〈benchmark〉 ::= ( benchmark 〈bench name〉 〈bench attribute〉+ )

38



Index

FOL=, 6

formula
closed, 11

rank, 8

satisfiability
modulo theories, 4
procedure, 5

smt
solver, 5

SMT-LIB, 4

theory
basic, 6
combined, 6
component, 6
structured, 6

variables
formula variables, 8
term variables, 8

39


	About this Document
	Copyright Notice

	Introduction
	Basic Assumptions and Structure
	Underlying Logic
	Background Theories
	Background Logics

	The SMT-LIB Underlying Logic and Language
	The Formula Sublanguage
	The additional constructs
	Well-sorted formulas

	The SMT-LIB Theory Language
	SMT-LIB Logics

	The SMT-LIB Benchmark Language
	Semantics
	Model-theoretic Semantics
	Translation Semantics
	Equivalence of the two Semantics

	Concrete Syntax
	Terms and formulas
	Theories
	Benchmarks
	Comments

	Acknowledgments
	Abstract Syntax
	Concrete Syntax

