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1 Introduction

This paper is a first proposal for a common format for the Satisfiability Mod-
ulo Theories Library, or SMT-LIB for short. The main goal of the SMT-LIB
initiative [2], coordinated by these authors and supported by a growing num-
ber of researchers world-wide, is to produce a on-line library of benchmarks for
satisfiability modulo theories. By benchmark we mean a logical formula to be
checked for satisfiability modulo (combinations of) background theories of inter-
est. Examples of background theories typically used in computer science are real
and integer arithmetic and the theories of various data structures such as lists,
arrays, bit vectors and so on.
A lot of work has been done in the last few years by several research groups

on building systems for satisfiability modulo theories. We believe that having a
library of benchmarks will greatly facilitate the evaluation and the comparison
of these systems, and advance the state of the art in the field, in the same way as,
for instance, the TPTP library [3] has done for theorem proving, or the SATLIB
library [1] has done for propositional satisfiability.

2 The Satisfiability Modulo Theories Library

We envision a library consisting of two main sections: one containing the speci-
fication of several background theories, and another containing benchmark sets,
grouped under a number of indexes such as their corresponding background the-
ory, the class of formulas they belong to, the type of problem they originate from
and so on.
For the library to be viable and useful it should adopt a common standard

for expressing the benchmarks, and for defining the background theories in a
rigorous way—so that there is no doubt on which theories are intended. In this
respect, some natural questions arise.

1. Is it sufficient to use a first-order language for the benchmarks?
(After all, most of the research in decision procedure has been done in a
first-order setting.)



2. If so, should the library be limited to ground (i.e. quantifier-free) satisfiability
problems? Or should it also consider problems with quantifiers?

3. Should the library adopt a sorted or an unsorted input language?
4. How should the background theories and their various combinations be de-
fined and specified?

5. Which concrete syntax should we use for the benchmarks?

In the rest of the paper we discuss some possible answers to these questions
and put forward an initial proposal. The proposal described here has been pre-
pared by unifying a number of ideas contributed by the members of the SMT-LIB
interest group.

3 Basic Assumptions and Proposals

We start by fixing the terminology and making some basic assumptions.
We assume that input problems, i.e. logical formulas, are to be checked for

satisfiability, not validity.3 In particular, given a theory T and a formula ϕ, we
are interested in whether ϕ is satisfiable in T , or is satisfiable modulo T , that is,
whether there is a model of ϕ that satisfies (the existential closure of) ϕ.
Informally speaking, let us call a satisfiability procedure any procedure for

satisfiability modulo some given theory. With satisfiability procedures one can
distinguish among

1. the procedure’s underlying logic (first-order, many-sorted, modal, intuition-
istic, higher order, etc.),

2. the procedure’s background theory, the theory against which satisfiability is
checked (typically a set of closed formulas in the underlying logic’s syntax
or a set of models in the logic’s semantics), and

3. the procedure’s input language, that is, the class of formulas the procedure
accepts as input (ground, CNF, first-order, temporal, etc.).

For instance, the underlying logic of a typical solver for linear arithmetic
is first-order logic with equality, the background theory is the theory of real
numbers, and the input language is the class of conjunctions of linear equations
and inequations.
We believe that to ease organization and classification it would be helpful for

SMT-LIB to follow this distinction as well. This entails that

SMT-LIB should (i) adopt at least one underlying logic, (ii) define a
number of background theories, and (iii) specify a general syntax for
the various benchmarks, providing a way to indicate to which class of
formulas a benchmark belongs.

We briefly discuss these three points in the following subsections, together
with our proposal for each.

3 The difference matters only for those classes of problems that are not closed under

logical negation.



3.1 The Logic

There is unanimous agreement within the SMT-LIB interest group that SMT-
LIB should concentrate on a single underlying logic for its benchmarks and that
this logic should be first-order logic with equality (FOL=) or some variations of
it. There is less agreement on whether it should be classical unsorted logic or a
multi-sorted version.
An argument against supporting a multi-sorted version of FOL= is that it

is a more complicated framework than classical first-order logic, and that al-
most all theoretical results in satisfiability modulo theories (e.g. on combining
satisfiability procedures) are given in the context of unsorted FOL= only.
The issue of sorts, however, is very important in this field, because a large

number of background theories and input problems are more naturally formu-
lated in a sorted framework. As a matter of fact, some of the existing solvers
actually have a sorted input language. Therefore, we feel that SMT-LIB should
provide some kind of support for sorts.
In an attempt to balance the pros and cons of a multi-sorted framework, we

propose here a compromise solution that seeks to combine the simplicity and
familiarity of unsorted logic with the convenience of a sorted language.

We propose for SMT-LIB to adopt unsorted FOL= as the sole underlying
logic, but to allow benchmarks and theories to be specified in a many-
sorted language whose semantics is provided by a translation into FOL=.

The proposed language and its translation into FOL= are discussed in the
next sections.

3.2 The Background Theories

One of the goals of the SMT-LIB initiative is to clearly define a catalog of
background theories, starting with a small number of popular ones, and adding
new ones as solvers for them are developed. Theories will be specified in SMT-
LIB independently of any benchmarks or solvers. Each set of benchmarks then
will contain a reference to its own background theory.
We distinguish between basic (or component) theories and combined theories.

By combined theory we mean a theory that is defined as some kind of combi-
nation of basic theories. Example of basic theories include the theory of real
numbers, the theory of arrays, the theory of lists and so on.

We propose that basic theories be specified informally albeit as rigorously
as possible. We do not prescribe any specific way to specify a theory.

The issue of specifying combined theories modularly in terms of their com-
ponent theories is a bit tricky, in particular in the presence of sorts. We leave
its discussion to a later version of this paper. Although this is not ideal, for the
time being we can specify a combined theory in SMT as if it was a basic one,
that is, disregarding the fact that it is the combination of other theories.



3.3 The Input Language

We propose to adopt a general first-order (sorted) language in which to
write all SMT-LIB benchmarks.

We realize, however, that many benchmarks are typically expressed in a some
fragment of the language of first-order logic. The particular fragment of FOL=

considered does matter because one can often write a solver specialized on that
fragment that is a lot more efficient than a solver meant for a larger fragment.4

An extreme case of this situation occurs when satisfiability modulo a given
theory T is decidable for a certain fragment (quantifier-free, say) but undecid-
able for a larger one (full first-order, say), as for instance happens with the
theory of arrays specified in Section 7.2. But it is also true when the decid-
ability of the satisfiability problem is preserved across various fragments. For
instance, if T is the theory of real numbers, the satisfiability in T of full-first
order formulas is decidable. However, one can build increasingly faster solvers by
restricting the language respectively to quantifier-free formula, linear equations
and inequations, difference equations, inequations between variables, and so on.
As a consequence,

it is useful for a benchmark to specify which specific fragment of the
general first-order language it belongs to. The attribute-based format we
propose for writing benchmark sets provides an attribute to specify just
that.

4 The SMT-LIB Logic and Language

We argued earlier for adopting classical (unsorted) first-order logic with equality
as the sole underlying logic for SMT-LIB.
For specifying benchmarks and possibly theory axioms, however, we propose

to adopt a many-sorted language with subsorts. As a typed language, the pro-
posed language is intentionally limited in expressive power. In essence,

the language allows one only to declare sorts (types) only by means of
sort symbols, to define a preordering on the sorts, to specify the interface
of function and predicate symbols in terms of the declared sorts, and to
specify the sort of quantified variables.

In type theory terms, the language has no type constructors, no type quan-
tifiers, no provisions for parametric polymorphism, and so on. The only form of
polymorphism it allows is subsort polymorphism, akin to subtype polymorphism
in object-oriented languages. Also, explicit (ad-hoc) overloading of function or
predicate symbols—by which a symbol could be explicitly given more than one
interface—is not allowed. The idea is to provide, at least at the beginning of this

4 By efficiency here we do not necessary refer to worst-case time complexity, but to

efficiency “in practice”.



project, just enough expressive power to represent typical benchmarks without
getting bogged down in the complexity (and higher-orderness) of type theory.
An abstract syntax for expressing formulas in the proposed language is pro-

vided in the following. In order for us to provide already actual examples of
benchmarks at this stage, the abstract syntax is actually not as abstract as it
could be. We wrote it so that an actual, concrete syntax is immediately derivable
from it.
The proposed syntax is attribute-based and Lisp-like. In designing it, we fol-

lowed the recommendation of several members of the SMT-LIB interest group
that the benchmarks be easily parsable. Preferring ease of parsing over human
readability is reasonable in this context because we expect not only that bench-
marks will be typically read by solvers but also that, by and large, they will
be produced in the first place by automated tools like verification condition
generators or translators from other formats.

The syntax of formulas in the SMT-LIB language extends the standard
abstract syntax of FOL= with the following additional constructs:
– a construct for declaring the sort of quantified variables,
– an if-then-else-like logical connective,
– a let construct for terms,
– a let construct for formulas, and
– a distinct construct for declaring a number of values as pairwise
distinct.

Except for the first extension, dictated by our goal of supporting sorts, the
other extensions are provided for greater convenience. We discuss each of them
in turn.

The if-then-else construct This construct is very common in benchmarks
coming for instance from hardware verification. Although it can be defined in
terms of more basic constructs such as conjunctions and implications, it provides
important structural information that a solver can use to speed up its computa-
tion. Since such information is lost if one imposes a previous translation into the
more basic constructs, it seems important to support an if-then-else construct
natively in the SMT-LIB language.
We point out that conceptually there are two kinds of if-then-else-like con-

structs: a logical connective of the form

if ϕ then ϕ1 else ϕ2

where ϕ,ϕ1, ϕ2 are formulas, and function symbol of the form

if t then t1 else t2

where t, t1, t2 are terms—with t being typically, but not necessarily, a Boolean
term. We propose to support only the first type, which has a straightforward
general semantics and provides already enough flexibility. The second type is



problematic because its semantics is domain dependent as it is based on the
type of t.5 The complications introduced by the second if-then-else construct
can be easily avoided because its effect can be achieved (with no substantial loss
of structural information) by means of the first if-then-else construct and fresh
constants. In fact, every atomic formula of the form ϕ(if t then t1 else t2), that
is, containing if t then t1 else t2 as a subterm, can be equivalently rewritten as

(if t = v then c = t1 else c = t2) ∧ ϕ(c)

where c is a fresh constant and v is the value tmust evaluate to for if t then t1 else t2
to evaluate to t1’s value.

The let construct for terms This is a construct of the form

let x = t in ϕ

where x is a variable, t is a term and ϕ is a formula. This construct is convenient
for benchmark compactness as it allows one to replace multiple occurrences of
the same term by a variable. It is of course also useful for a solver because it
saves the solver the effort to recognize the various occurrences of the same term
as such.

We propose to include this kind of construct, but with the restriction that t be
a ground term, that is, a term with no variables. This restriction is perhaps overly
strong. With it, however, the interpretation of let x = t in ϕ is straightforward
and unproblematic: it stands for the formula obtained from ϕ by replacing each
unbound occurrence of x in ϕ by t.6 With t ground we do not have to worry
about the problem of “variable capturing”, which occurs when a variable that is
originally free in t becomes bound after the substitution of t for x in ϕ.

The let construct for formulas This is a construct of the form

let p ≡ ϕ in ψ

where p is a propositional variable, ϕ is a formula with no free variables, and ψ
is any formula. The rationale for this construct and the restriction on ϕ to be a
closed formula is entirely similar to that for the previous let construct.

To simplify parsing, the proposed language will distinguish syntactically be-
tween the two let constructs.

5 In the literature, the second if-then-else evaluates to the value of t1, as opposed to

the value of t2 if t evaluates to some value v which, depending on problem domain,

is chosen to be true, 0, a positive number, an empty list, a non-empty one, and so

on.
6 By unbound we mean not in the scope of another let or of a quantifier in ϕ.



The distinct construct This construct is also added for conciseness. It has
the form

distinct(t1, . . . , tn)

for a variable n ≥ 2, where t1, . . . , tn are terms, and it stands for all pairwise
disequations between the ti’s.

4.1 The language of formulas

The proposed language of formulas is the well-sorted subset of the language gen-
erated by the non-terminal symbol let formula in the grammar below. Derivation
rules defining the well-sorted formulas and terms of the language follow later.
The grammar is given as a set of BNF-style production rules. In these rules,

we use boldface text to denote terminal symbols, the ( )∗ operator for denot-
ing zero or more repetitions of the operand, the ( )+ operator for one or more
repetitions, and the [ ] operator for zero or one repetitions.

let formula ::= ( :let var term let formula )
| ( :flet pred sym formula let formula )
| formula

formula ::= ( quant symb ( var sort symb ) formula )
| ( connective formula∗ )
| atomic formula

quant symb ::= :exists | :forall
var ::= ?identifier
sort symb ::= identifier

connective ::= :not | :impl | :iff | :ite | :and | :or | :xor

atomic formula ::= :true | :false | pred symb | ( pred symb term+ )
| ( = term term+ ) | ( :distinct term term+ )

term ::= var | numeral | fun symb | ( fun symb term+ )

pred symb ::= identifier | operator
fun symb ::= identifier | operator

numeral ::= a sequence of digits
identifier ::= a sequence of letters, digits and underscores ( ),

starting with a letter
operator ::= a “math operator” symbol such as +, ∗, <,<=,&, etc.

Here follow some salient features of the grammar that we think deserve dis-
cussion.
The let declarations generated by let formula are in a sense global: although

they can be nested, they must all come before the “main formula”. In other
words, let expressions are not allowed to appear below quantifiers or logical con-
nectives. Consistently with this restriction, in expressions of the form (:flet p ϕ ψ)



the formula ϕ cannot itself contain a let expression. These two restrictions as
well are dictated by simplicity concerns. However, they are only tentative at the
moment, and might be relaxed in the future if needed.
In this grammar we do not distinguish between constant and function sym-

bols (they are all defined as fun symb), and between propositional variables
and predicate symbols (they are all defined as pred symb). These distinctions
are really a matter of arity, which is taken care of later by the well-sortedness
rules. A similar observation applies to the logical connectives (the members of
connective) and the number of arguments they are allowed take.
Finally, we do not enforce here any disjointness constraints between the sets

of sort, function, and predicate symbols. Such constraints will be enforced later
at the level of specific theories and benchmark sets.
In the rest of the paper, we will often treat a non-terminal symbols of the

grammar above as the set of expressions it generates.

4.2 Well-sorted Formulas

The SMT-LIB language of formula is the largest set of well-sorted formulas con-
tained in the language generated by the previous grammar. Well-sorted formulas
are defined below by means of a set of sorting rules, similar in format and spirit
to the kind of typing rules found in the programming languages literature.
We first provide a set of subsorting rules that define the subsort relation as

a preorder on sort symbols. Then we provide a set of rules defining well-sorted
terms, and another set defining well-sorted formulas.
To specify these rules we need to presuppose the existence of a sorted signa-

ture Σ, defined formally below. Strictly speaking then, the SMT-LIB language
is a family of languages parametrized by Σ. As we will see later, for each bench-
mark ψ and theory T , the specific signature is going to be jointly defined by the
specification of of T and that of the benchmark set containing ψ.

Definition 4.1. An order-sorted signature Σ is a tuple consisting of:

– a non-empty subset ΣS of sort symb, a subset ΣF of fun symb, a subset ΣP

of pred symb, all pairwise disjoint,
– a binary relation Σ<: over ΣS,
– a mapping of the elements of var to elements of ΣS,
– a mapping of the elements of ΣF to a non-empty sequence of elements of
ΣS, and

– a mapping of the elements of ΣP to a possibly empty sequence of elements
of ΣS.

Note that the absence of overloading of function or predicate symbols in the
SMT-LIB language is enforced by the last two mappings in the definition of
signature.
To simplify the notation in this section we use the following meta-variables,

possibly with subscripts: S, U and T ranging over sort symb, x ranging over var,
a and f ranging over fun symb, p ranging over pred symb, t ranging over term,



k ranging over connective, ϕ ranging over formula, ψ ranging over let formula,
and n ranging over the non-negative integers.
We also use a distinguished sort symbol, denoted by F and assumed not to

be in sort symb, as the sort of well-sorted formulas.
In the following we will fix a signature Σ. Then, we will write x : S ∈ Σ to

mean that Σ maps the variable x to the sort S. We will write f : S1 · · ·Sn+1 ∈ Σ
to mean that f ∈ ΣF and Σ maps f to the sort sequence S1 · · ·Sn+1 (and
similarly for predicate symbols). We will write Σ, x : S to denote the signature
that coincides with Σ except (possibly) that it maps x to S. Similarly, we will
write Σ, p : ε to denote the signature that coincides with Σ except (possibly)
that it contains the predicate symbol p and maps p to the empty string of sorts
(in other words, declares p as a propositional variable).

Subsorting rules

S ∈ ΣS

Σ ` S <: S

(S, T ) ∈ Σ<:

Σ ` S <: T

Σ ` S <: U Σ ` U <: T

Σ ` S <: T

We say that a sort S is a subsort of a sort T (according to Σ) if Σ ` S <: T
is derivable by the rules above.
Note that the subsorting relation<: induced byΣ coincides with the reflexive-

transitive closure of Σ<:.

Well-sortedness rules for terms

x : S ∈ Σ

Σ ` x : S

f : S1 · · ·Sn+1 ∈ Σ

Σ ` f : S1 · · ·Sn+1

Σ ` t : S Σ ` S <: T

Σ ` t : T

Σ ` f : S1 · · ·Sn+1 Σ ` t1 : S1 · · · Σ ` tn : Sn

Σ ` (f t1 · · · tn) : Sn+1

We call an element t of term well-sorted (with respect to Σ) if Σ ` t : S is
derivable by the sort rules above for some sort S. In that case, we also say that
t is of sort S.
The rules are pretty standard and self-explanatory. The only interesting rule

is perhaps the third one which basically says that any term of sort S is also of
sort T for any supersort T of S. Subsort polymorphism is allowed in the language
be virtue of this rule.

Well-sortedness rules for formulas

Σ ` :true : F Σ ` :false : F

p : S1 · · ·Sn ∈ Σ

Σ ` p : S1 · · ·Sn F

Σ ` t1 : S1 · · · Σ ` tn+2 : Sn+2

Σ ` ( = t1 · · · tn+2) : F

Σ ` t1 : S1 · · · Σ ` tn+2 : Sn+2

Σ ` (:distinct t1 · · · tn+2) : F



Σ ` p : S1 · · ·Sn F Σ ` t1 : S1 · · · Σ ` tn : Sn

Σ ` (p t1 · · · tn) : F

Σ ` ϕ : F

Σ ` (:not ϕ) : F

Σ ` ϕ1 : F Σ ` ϕ2 : F

Σ ` (:impl ϕ1 ϕ2) : F

Σ ` ϕ1 : F Σ ` ϕ2 : F

Σ ` (:iff ϕ1 ϕ2) : F

Σ ` ϕ1 : F Σ ` ϕ2 : F Σ ` ϕ3 : F

Σ ` (:ite ϕ1 ϕ2 ϕ3) : F

Σ ` ϕ1 : F · · · Σ ` ϕn : F

Σ ` (k ϕ1 · · · ϕn) : F

Σ, x : S ` ϕ : F

Σ ` (:exists (x S) ϕ) : F

Σ, x : S ` ϕ : F

Σ ` (:forall (x S) ϕ) : F

Σ ` t : S Σ, x : S ` ψ : F

Σ ` (:let x t ψ) : F
if t is ground

Σ ` ϕ : F Σ, p : ε ` ψ : F

Σ ` (:flet p ϕ ψ) : F
if ϕ is closed and p /∈ ΣP

By ground and closed in the last two rules we mean containing no occur-
rences of elements of var and no free occurrences of elements of var, respectively,
according to the standard meaning of free occurrence in FOL=.

To reduce the level of nesting of formulas the and, or, and exclusive or con-
nectives are defined, thanks to their associativity, as varyadic connectives taking
zero or more arguments. The semantics of the connectives applied to zero argu-
ments is the expected one: (:and) is equivalent to :true, while (:or) and (:xor)
are both equivalent to :false.

We say that an element ψ of let formula is well-sorted (with respect to Σ) if
Σ ` ψ : F is derivable by the rules above.

Definition 4.2. The SMT-LIB language for formulas is the set of all closed
well-formed formulas generated by let formula.

Note that we consider closed formulas only. This is mostly a technicality,
motivated by considerations of convenience. In fact, with a closed formula ψ
of a signature Σ the particular mapping of variables to sorts defined by Σ is
irrelevant. The reason is that the formula itself contains its own sort declaration
for its variables, either explicitly, for the variables bound by a quantifier, or
implicitly, for the variables bound by a let. Using only closed formulas then
simplifies the task of specifying their signature, as it becomes unnecessary to
specify how the signature maps the elements of var to the signature’s sorts.

There is no loss of generality in this approach because, since we are interested
in formula satisfiability, every formula ϕ(x) with free variables x of sort S can
be rewritten as ∃x : S. ϕ(x). An alternative way to avoid free variables in
benchmarks is proposed in Section 5.2



5 The SMT-LIB Format

In this section we propose a format for specifying theories and benchmark sets.
As with formulas, this too is an attribute-value-based format. The main differ-
ence with formulas is that some of the attributes do not have a formally specified
value—they just contain free text.
Ideally, a formal specification of these free-text attributes would be preferable

to free text in order to avoid ambiguities and misinterpretation.

The choice of using free text for these attributes is motivated by practi-
cality reasons: (i) these attributes are meant to be read by human readers,
not programs and (ii) the amount of effort needed to devise a formal lan-
guage for these attributes first and to specify their values in this language
later does not seem justified by the current goals of SMT-LIB.

As mentioned in the introduction, we propose that background theories and
benchmark sets be specified separately in SMT-LIB. We described the proposed
format for each in the following using the same kind of grammar used in Sec-
tion 4.1 and also some of the non-terminal symbols defined there.

5.1 Specifying theories

In this version of the paper we consider the specification of basic theories only.
We leave the problem of specifying combined theories to a later version.

A theory specification defines both an order-sorted signature for a theory
and the theory itself.

Formally, a theory specification is an element of the language generated by
the non-terminal theory in the grammar below.

theory ::= ( :name string

:sorts ( sort symb+ )
[:subsorts ( subsort decl+ )]
:funs ( fun symb decl+ )
[:preds ( pred symb decl+ )]
:definition string

[:extensions string]
)

subsort decl ::= ( sort symb sort symb )
fun symb decl ::= ( fun symb sort symb+ )
pred symb decl ::= ( pred symb sort symb∗ )

Of all the elements of theory we consider only those that satisfy the following
constraints:

1. sort symbols do not occur as function or predicate symbol as well, and sim-
ilarly for function and predicate symbols—the sets of sort symbols names,
function symbols, and predicate symbols are pairwise disjoint;



2. the sort symbols occurring in the :subsorts, :funs or :preds attribute are
among the symbols listed in the :sorts attribute—all sort symbols used must
be declared;

3. a function symbol does not occur more than once in :funs—no overloading
of function symbols;

4. a predicate symbol does not occur more than once in :preds—no overloading
of predicate symbols;

5. every sort symbol that occurs only on the left in the pairs of the :subsorts at-
tribute occurs as the last symbol in a function symbol declaration in :funs—
no empty sorts.

The signature of a theory is defined by the :sorts, :subsort, :funs and :preds
attributes in the obvious way.
The :subsort and :preds attributes are optional because a theory might have

a flat sort structure or lack predicate symbols. The :sorts attribute, however,
is not optional. The way the language is designed, the signature must have at
least one sort otherwise is is not possible to specify the interfaces of function
and predicate symbols. This is no real limitation because for instance unsorted
theories can be always seen as one-sorted.
The :funs attribute is also not optional. This is a consequence of constraint 5

above which forces the existence of at least one function symbol for at least one
sort. The purpose of this constraint is to guarantee that for each sort S with no
subsorts there is at least one well-sorted term of sort S. This is a technicality,
well-known in the many-sorted logic literature. Although it is not strictly neces-
sary, it somewhat simplifies the semantics and the proof theory of many-sorted
logics without real loss of generality. In our case it is almost invariably satisfied.
When it is not, it is enough to add in the :funs attribute the declaration of a
new constant symbol of the appropriate sort.
The :definition attribute is meant to contain a natural language definition

of the theory. While this definition is expected to be as rigorous as possible, it
does not have to be a formal one. Some theories (like the theory of real numbers)
are well known, and so just a reference to their common name might be enough.
For theories that have a small set of axioms (or axiom schemas), it might be
convenient to list the actual axioms. For some other theories, a mix a formal
notation and informal explanation might be more appropriate.
The optional :extension attribute is meant to document any notational

conventions used in the listed benchmarks. This is useful because often the syntax
of a theory is extended for convenience with syntactic sugar.7

5.2 Specifying Benchmarks

We propose to group benchmarks in benchmark sets.

7 Think for instance of Presburger arithmetic, where a numeral n abbreviates the

n-fold application of the successor function to zero, and the predicate t1 ≤ t2 abbre-

viates the formula t1 < t2 ∨ t1 = t2.



The specification of a benchmark set contains, in addition to the bench-
marks themselves, a reference to their background theory, a description of
the language fragment to which the benchmarks belong, and an optional
specification of additional function and predicate symbols.

More formally, a benchmark set specification is an element of the language
generated by the non-terminal benchmark set in the grammar below.

benchmark set ::= ( :name string

:theory string

:language string

[:extra funs ( fun symb decl+ )]
[:extra preds ( pred symb decl+ )]

:benchmarks ( benchmark+ )
)

benchmark ::= ( :formula let formula :status status )
status ::= :sat | :unsat | :unknown

Of all the elements of benchmark set we consider only those that satisfy the
following constraints:

1. the value of the :theory attribute coincides with the value of the :name
attribute of some theory specification tspec in SMT-LIB;

2. the sort symbols occurring in (the value of) the :extra funs or the :extra preds
attribute are among the symbols listed in the :sorts attribute of tspec;

3. a function symbol does not occur more than once in :extra funs,
4. a predicate symbol does not occur more than once in :extra preds;
5. a function symbol occurs neither in :extra preds nor in tspec;
6. a predicate symbol occurs neither in :extra funs nor in tspec;
7. all function (resp. predicate) symbols occurring in the :benchmarks at-
tribute are declared either in tspec or in the :extra funs (resp. :extra preds)
attribute.

The :name attribute provides a name for the set, for reference purposes.
The :theory attribute simply contains the name of a background theory

specified in SMT-LIB.
The :language attribute specifies the specific subset of let formula to which

the listed benchmarks belong. The attribute is text valued because it has mostly
documentation purposes. It is meant to help the benchmark user decide whether
his solver can process the benchmark set. A natural language description of the
sublanguage seems therefore adequate for this purpose.
The :extra funs attribute complements the :funs attribute of the corre-

sponding theory specification by declaring additional function symbols with their
interface. The :extra preds attribute has a similar purpose, but for predicate



symbols. In contrast to the symbols possibly defined in the :extensions at-
tribute of a theory specification, which are interpreted in terms of the symbols
in the theory, the symbols in :extra funs and :extra funs are uninterpreted in
associated theory.
Uninterpreted function or predicate symbols are found often in applications

of satisfiability modulo theories, typically as a consequence of Skolemization
or abstraction transformations applied to more complex formulas. Hence SMT-
solvers typically accept formulas containing uninterpreted symbols in addition
to the symbols of their background theory. The :extra funs and :extra preds
attributes serve to declare any uninterpreted symbols occurring in benchmarks
listed in the :benchmarks attribute. The value of :extra funs and :extra preds
attributes is specified formally because, in effect, it dynamically expand the sig-
nature of the associated background theory, hence it is convenient for it to be
directly readable by satisfiability procedures for that theory.
The :extra funs attribute is also useful for specifying benchmarks with free

variables (such as quantifier-free ones). As mentioned in Section 4.1, our language
does not allow benchmarks with free variables. As we saw, one way to circumvent
this restriction is to close such formulas existentially. Another one is to replace
the free variables by fresh constant symbols of the proper sort. In the second
case, these constant symbols are declared in the :extra funs attribute.
The :benchmarks attribute lists the actual benchmarks—formally defined

as members of let formula—specifying for each of them whether the benchmark
is known to be (un)satisfiable in the background theory. Knowing about the
satisfiability of a benchmark is useful for debugging new solvers.
At the moment we require that all function or predicates symbols in a bench-

mark set be declared either in the corresponding theory specification or in the
:extra funs and :extra preds attribute. Depending on the feedback we will get
from the SMT-LIB interest group, this restriction might be relaxed in a later
version of this paper. Specifically, one might think of following the convention
that any undeclared function or predicate symbol occurring in a benchmark is
automatically considered as uninterpreted. Technically, this is feasible if we add
to the proposed sort system a predefined top sort, i.e., a sort that is by defini-
tion a supersort of any other sort. In that case, an interface for a symbol (i.e. its
input and output sorts) can be alway inferred automatically from the formula.
We point out, however, that in essence this requires a solver to be able to do
type inference, as opposed to just type checking, a considerable more complex
task in case of signatures with subsorts.

6 Semantics

The semantics of the SMT-LIB language is provided by a translation of
let formulas and their signature into formulas of FOL=.

We define a translation operator Tr( ) below, following a well-known rela-
tivization process for translating many-sorted logics into classical logic. Formally,
the semantics of SMT-LIB benchmarks is defined as follows.



Definition 6.1. Let Σ be an order-sorted signature generated by a set Sub of
subsort decl’s, a set F of fun symb decl’s, and a set P of fun symb decl’s. Let
T be a theory (of signature Σ) axiomatized by a set Ax of closed formulas well-
sorted with respect to Σ. Then let ψ be a closed formula well-sorted with respect
to Σ. We say that ψ is satisfiable in T iff the set

{Tr(sd) | sd ∈ Sub} ∪ {Tr(fd) | fd ∈ F} ∪ {Tr(ax) | ax ∈ Ax} ∪ {Tr(ψ)}

of FOL= sentences is satisfiable in the classical sense.

The particular sets Sub, F , P , Ax in the definition above are meant to be
elicited from the specification of a benchmark set containing the formula ψ and
from the specification of the benchmark set’s background theory.

A fine point to note about our translation semantics is that it effectively
requires all background theories of SMT-LIB to be defined axiomatically (so that
one can identify the set Ax needed in Definition 6.1). Defining the background
theories by a set of axioms, as opposed to a set of models, say, looks like the
only option if we want to avoid specifying a native algebraic semantics—one
with order-sorted models—for our language, instead of the translation semantics
below. Further discussion on this point is needed.

The translation operatorTr( ) is defined in the following on sort declarations,
function symbol declarations, and formulas. To describe the translation into
FOL=, we use a conventional syntax for FOL= sentences and abuse the notation
a bit by sometimes ignoring the fact that the terms of the SMT–language have
a LISP-like syntax instead of the usual mathematical notation.

Translation of sort declarations and function symbols declarations

Tr(sort decl) = Tr((S1 S2)) = ∀x (S1(x)⇒ S2(x))

Tr(fun symb decl) = Tr((f S1 · · ·Sn+1))
= ∀x1, . . . , xn (S1(x1) ∧ · · · ∧ Sn(xn)⇒ Sn+1(f(x1, . . . , xn)))

Translation of formulas For formulas, the translation operator is defined
inductively on the structure of let formula.

Recall that variable occurrences in a formula can be bound by a quantifier
or by a :let binder, while propositional variable occurrences in a formula can
be bound by an :flet binder. In the following, we denote by ψ{x 7→ t} the
formula obtained from the formula ψ by simultaneously replacing every unbound
occurrence of the variable x in ψ by the term t. Similarly, we denote by ψ{p 7→
ϕ} the formula obtained from ψ by simultaneously replacing every unbound
occurrence of the propositional variable p in ψ by the formula ϕ.



Tr((:let a t ψ)) = Tr(ψ{x 7→ t})
Tr((:flet p ϕ ψ)) = Tr(ψ{p 7→ ϕ})
Tr((:not ϕ)) = ¬Tr(ϕ)
Tr((:and ϕ1 · · ·ϕn)) = Tr(ϕ1) ∧ · · · ∧Tr(ϕn)
Tr((:or ϕ1 · · ·ϕn)) = Tr(ϕ1) ∨ · · · ∨Tr(ϕn)
Tr((:xor ϕ1 · · ·ϕn)) = Tr(ϕ1)⊕ · · · ⊕Tr(ϕn)
Tr((:ite ϕ1 ϕ2 ϕ3)) = (Tr(ϕ1)⇒ Tr(ϕ2)) ∧ (¬Tr(ϕ1)⇒ Tr(ϕ3))
Tr((:exists (x S) ϕ)) = ∃x (S(x) ∧Tr(ϕ))
Tr((:forall (x S) ϕ)) = ∀x (S(x)⇒ Tr(ϕ))
Tr(:false) = ⊥
Tr(:true) = ¬⊥
Tr(p) = p
Tr((p t1 · · · tn+1)) = p(t1, . . . , tn+1)
Tr(( = t1 · · · tn+2)) = t1 = t2 ∧ · · · ∧ tn+1 = tn+2

Tr((:distinct t1 · · · tn+2)) =
∧

1≤i<j≤n+2 ¬(ti = tj)

7 Examples

In this section we present some examples of theory and benchmark set specifi-
cations written in the proposed format.
Most examples are about the theory of real numbers because this theory is

particularly apt at illustrating the various aspects of the format, and in particular
the point of distinguishing between logic, theories, and input language in SMT-
LIB.

7.1 The theory of real numbers

There really is one theory TR that captures the real numbers, the one that
logicians usually call the theory of ordered real-closed fields. The literature,
however, is full with theories and “logics” that one way or another have to
do with the real numbers. For the purposes of SMT-LIB, most of these various
theories and logics are best described in terms of the restriction that they impose
on the class of formulas considered for satisfiability in TR.
For instance, the satisfiability of formulas in so called “linear arithmetic”

can be described as the satisfiability in TR of formulas built as conjunctions of
equations and inequations (≤) between linear terms, that is, terms reducible to
linear polynomials.
Similarly, the satisfiability of formulas in so the called “separation logic” or

“difference logic”can be described as the satisfiability in TR of conjunctions of
formulas of the form m ∗ (x− y) < n where x and y are variables and m,n are
two numerals.
To avoid an undue proliferation of theories in STM-LIB we would specify

only the full first-order theory of the real numbers, and consider its restrictions
only at the level of benchmark sets. Similar considerations of course would apply



to other theories such as, for instance, the full-first order theory of the natural
numbers and the restriction of it known as Presburger arithmetic.
We present two versions of the theory of the real numbers to highlight the

different possibilities offered by the order-sorted framework.

Real numbers I

(:name "REALS-I"

:sorts (Real)

:funs ((0 Real) (1 Real)

(~ Real Real)

(+ Real Real Real) (* Real Real Real))

:preds ((< Real Real))

:definition "The standard, one-sorted theory of real numbers"

:extensions "A numeral n > 1 abbreviates the sum (+ 1 ... (+ 1 1))

of n ones;

(- t_1 t_2) abbreviates (+ t_1 (~ t_2));

(<= t_1 t_2) abbreviates (:or (< t_1 t_2) (= t_1 t_2))

and similarly for >= and >"

)

A benchmark set for this theory might look like the following.

(:name "RB1"

:theory "REALS-I"

:language "Conjunctions of linear ground equations and inequations"

:extra_funs ((x Real) (y Real) (f Real Real))

:benchmarks (

(:formula (:and (= (+ (* 5 x) y) 0)

(= (- x y) 4))

:status :sat)

(:formula (:and (= (+ x (+ y (f x))) 0)

(<= (- x y) 4)

(< (* 4 x) (f x)))

:status :sat))

)

Note how this example uses the uninterpreted constants x and y as the un-
knowns of the first benchmark, and how the second benchmark also contains
occurrences of the uninterpreted function symbol f.
The second example considers first-order benchmarks with no extra symbols.

(:name "RB2"

:theory "REALS-I"

:language "all first-order formulas"

:benchmarks (

(:formula (:not (:forall (?x Real) (:forall (?y Real)

(impl (< ?x ?y)

(:exists (?z Real) (:and (< ?x ?z) (< ?z ?y)))))))

:status :unsat))

)



The third example considers difference logic-like benchmarks.

(:name "RB3"

:theory "REALS-I"

:language "Boolean combinations of atoms of the form

(op (* m (- x y)) n)

where op is =, <, <, >, or >=,

m, n are numerals and x,y are variables."

:extra_funs ((x Real) (y Real) (z Real))

:benchmarks (

(:formula (:or (:and (<= (- x y) 0)

(= (- x z) 7))

(< (* 3 (- y z)) 1))

:status :unknown))

)

Real numbers II

Here is a second take on the theory of real numbers, motivated by the fact that
in some applications one is often interested in restricting the range of problem
variables to integer values only. For those applications an order-sorted version
of the theory seems more convenient.

(:name "REALS-II"

:sorts (Nat Int Real)

:subsorts ((Nat Int) (Int Real))

:funs ((0 Nat) (1 Nat)

(~ Real Real)

(+ Real Real Real) (* Real Real Real))

:preds ((< Real Real))

:definition "The standard theory of real numbers over the sort Real,

together with the Nat and Int subsorts defined by the

following axioms, which specify that the sort Nat is

generated by 0,1 and +, while the sort Int is generated

by 0,1, + and ~(unary minus).

(:forall (?x Real)

(:iff (:exists (?n Nat) (= ?x ?n))

(:or (= ?x 0)

(exists (?m Nat) (= ?x (+ ?m 1))))))

(:forall (?x Real)

(:iff (:exists (?z Int) (= ?x ?z))

(:exists (?n Nat) (:or (= ?x ?n) (= ?x (~ ?n))))))"

:extensions "A numeral n > 1 abbreviates the sum (+ 1 ... (+ 1 1))

of n ones.

(- t_1 t_2) abbreviates (+ t_1 (~ t_2))

(<= t_1 t_2) abbreviates (:or (< t_1 t_2) (= t_1 t_2))"

)



The following benchmark set should make clear that subsorts so add to the
power of the language, as changing sort constraints on a formula’s variables
changes its satisfiability in the theory.

(:name "RB4"

:theory "REALS-II"

:language "Conjunctions of linear equations"

:extra_funs ((x Real) (y Real) (n Int) (m Int))

:benchmarks (

(:formula (:and (= (+ x y) 1)

(= (- (* 3 x) (* 3 y)) 1))

:status :sat)

(:formula (:and (= (+ m n) 1)

(= (- (* 3 n) (* 3 n)) 1))

:status :unsat))

)

The benchmarks in this set represent the same system of equations. The only
difference is that the system’s unknowns are required to be real valued in the
first case and integer valued in the second case. Since the system admits only
a non-integer solution, the first benchmark is satisfiable in the theory while the
second is not.

7.2 The theory of arrays

We conclude by providing a specification for another popular theory in the SMT
literature, the theory of functional arrays (without the extensionality axiom).
The specification of this theory is unproblematic because the theory is defined
by just two axioms.

(:name "ARRAYS-I"

:sorts (Index Element Array)

:funs ((select Array Index Element) (store Array Index Element Array))

:definition "The theory of arrays defined by the following axioms:

(:forall (?a Array) (:forall (?i Index)

(:forall (?e Element)

(= (select (store ?a ?i ?e) ?i) ?e))))

(:forall (?a Array)

(:forall (?i Index) (:forall (?j Index)

(:forall (?e Element) (:or (= ?i ?j)

(= (select (store ?a ?i ?e) ?j)

(select (?a ?j))))))))"

)
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