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Preface

The SMT-LIB initiative is an international effort, supported by several research groups
worldwide, with the two-fold goal of producing an extensive on-line library of benchmarks
and promoting the adoption of common languages and interfaces for SMT solvers. This
document specifies Version 2.0 of the SMT-LIB Standard. This is a major upgrade of the
previous version, Version 1.2, which, in addition to simplifying and extending the languages
of that version, includes a new command language for interfacing with SMT solvers.
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Chapter 1

General Information

1.1 About This Document

This document is mostly self-contained, though it assumes some familiarity with first-order
logic, aka predicate calculus. The reader is referred to any of several textbooks on the
topic [Gal86, Fit96, End01, Men09]. Previous knowledge of Version 1.2 of the SMT-LIB
standard [RT06] is not necessary. In fact, Version 1.2 users are warned that this version,
while largely based on Version 1.2, is not backward compatible with it. See below for a
summary of the major differences.

This document provides BNF-style abstract and concrete syntax for a number of SMT-
LIB languages. Only the concrete syntax is part of the official SMT-LIB standard. The
abstract syntax is used here mainly for descriptive convenience; adherence to it is not pre-
scribed. Implementors are free to use whatever internal structure they please for their
abstract syntax trees.

New releases of the document are identified by their release date. Each new release of the
same version of the SMT-LIB standard contains, by and large, only conservative additions
and changes with respect to the standard described in the previous release. The only non-
conservative changes may be error fixes.

Historical notes and explanations of the rationale of design decisions in the definition of
the SMT-LIB standard are provided in Appendix A, with reference in the main text given
as a superscript number enclosed in parentheses.

1.1.1 Differences with Version 1.2

The concrete syntax of Version 2.0 is generally simpler and leaner than that of the pre-
vious version. Moreover, SMT-LIB expressions are now a sublanguage of Common Lisp’s
S-expressions. Several syntactic categories, including that of benchmarks, are gone.

The two major additions are (i) a meta-level mechanism that approximates parametric
sorts and polymorphic function symbols in theory declarations, and (ii) a command language
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for SMT solvers that allows one, among other things, to assert and retract formulas incre-
mentally, to define new sort and function symbols, to check the satisfiability of the asserted
formulas and query their found model, if any, or ask for an unsatisfiable core otherwise.

The most notable differences with Version 1.2 are listed below.

• Sort symbols can have arity greater than 0, with sorts now denoted by structured
sort terms such as (Array Int Real), as opposed to just sort constants such as
IntRealArray.

• The syntactic categories for formulas, predicate symbols and formula variables are all
gone. Formulas are now terms of a distinguished Boolean sort, predicate symbols are
Boolean function symbols, and formula variables are (term) variables of Boolean sort.

• The two if-then-else operators of Version 1.2 have been merged into a single one.

• The two let binders of Version 1.2 have also been merged into a single one, and extended
to a parallel-let binder.

• Variables do not have a syntax distinct from that of function symbols anymore.

• Theory function symbols can now be overloaded arbitrarily, although in ambiguous
cases their occurrences within a term must be annotated with a return sort. (User-
defined function symbols cannot overload any already defined symbol.)

• Indexed identifiers are now denoted by expressions like (_ name 3 5), where _ is now
a reserved operator, instead of lexemes like name[3:5].

• Except distinct, variadic function symbols are now disallowed. Every function symbol
has a fixed arity—or a finite number of fixed arities in case of overloading. Expressions
of the form (f t1 t2 · · · tn) are allowed but only for binary theory symbols of a
few specific ranks, and as syntactic sugar for expressions in which f is applied to two
arguments only. The specific desugaring to be used is specified by an annotation in f ’s
declaration.

• The concrete syntax for term annotations has changed to (! t α1 · · · αn) where ! is
now a reserved annotation operator, t is a term, and α1 · · · αn are n ≥ 1 annotations.

• Each theory declaration is now parametrized by an additional set of sort and function
symbols. It stands for an infinite family of theories, each an instance of the schema,
as opposed to a single theory.

• Logic declarations can refer to more than one basic theory. In that case, their back-
ground theory is a modular combination of several background theories.

• Benchmarks are superseded by scripts, sequences of commands. Version 1.2 bench-
marks are converted into scripts of a very simple form. Such scripts declare a logic,
(possibly) declare new sort and function symbols, assert one or more formulas, and ask
about their satisfiability.



12 Chapter 1. General Information

1.1.2 Typographical and Notational Conventions

The concrete syntax of the SMT-LIB language is defined by means of BNF-style production
rules. In the concrete syntax notation, terminals are written in typewriter font, as in false,
while syntactic categories (non-terminals) are written in slanted font and enclosed in angular
brackets, as in 〈term〉. In the production rules, the meta-operator ::= and | are used as usual
in BNF. Also as usual, the meta-operators ∗ and + denote zero, respectively, one, or more
repetitions of their argument.

Examples of concrete syntax expressions are provided in shaded boxes like the following.

(f (− x ) x )

In the abstract syntax notation, which uses the same meta-operators as the concrete
syntax, words in boldface as well as the symbols ≈,∃,∀, and Π denote terminal symbols,
while words in italics and Greek letters denote syntactic categories. For instance, x, σ
are non-terminals and Bool is a terminal. Parentheses are meta-symbols, used just for
grouping—they are not part of the abstract language. Function applications are denoted
simply by juxtaposition, which is enough at the abstract level.

To simplify the notation, when there is no risk of confusion, the name of an abstract
syntactic category is also used, possibly with subscripts, to denote individual elements of
that category. For instance, t is the category of terms and t, together with t1, t2 and so on,
is also used to denote individual terms.

The meta-syntax x̄ denotes a sequence of the form x1x2 · · ·xn for some x1, x2, . . . , xn and
n ≥ 0.

1.2 Overview of SMT-LIB

Satisfiability Modulo Theories (SMT) is an area of automated deduction that studies meth-
ods for checking the satisfiability of first-order formulas with respect to some logical theory
T of interest [BSST09]. What distinguishes SMT from general automated deduction is that
the background theory T need not be finitely or even first-order axiomatizable, and that spe-
cialized inference methods are used for each theory. By being theory-specific and restricting
their language to certain classes of formulas (such as, typically but not exclusively, ground
formulas), these specialized methods can be implemented in solvers that are more efficient
in practice than general-purpose theorem provers.

While SMT techniques have been traditionally used to support deductive software ver-
ification, they are now finding applications in other areas of computer science such as, for
instance, planning, model checking and automated test generation. Typical theories of inter-
est in these applications include formalizations of arithmetic, arrays, bit vectors, algebraic
datatypes, equality with uninterpreted functions, and various combinations of these.
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1.2.1 What is SMT-LIB?

SMT-LIB is an international initiative, coordinated by these authors and endorsed by a
large number of research groups world-wide, aimed at facilitating research and development
in SMT [BST10]. Since its inception in 2003, the initiative has pursued these aims by focus-
ing on the following concrete goals: provide standard rigorous descriptions of background
theories used in SMT systems; develop and promote common input and output languages
for SMT solvers; establish and make available to the research community a large library of
benchmarks for SMT solvers.

The main motivation of the SMT-LIB initiative was the expectation that the availability
of common standards and of a library of benchmarks would greatly facilitate the evaluation
and the comparison of SMT systems, and advance the state of the art in the field, in the
same way as, for instance, the TPTP library [Sut09] has done for theorem proving, or the
SATLIB library [HS00] has done initially for propositional satisfiability. These expectations
have been largely met, thanks in no small part to extensive benchmark contributions from
the research community and to an annual SMT solver competition, SMT-COMP [BdMS05],
based on benchmarks from the library.

At the time of this writing, the library contains more than 92,000 benchmarks and keeps
growing. Formulas in SMT-LIB format are now accepted by the great majority of current
SMT solvers. Moreover, most published experimental work in SMT relies significantly on
SMT-LIB benchmarks.

1.2.2 Main features of the SMT-LIB Standard

The previous version of the SMT-LIB standard, Version 1.2, provided a language for spec-
ifying theories, logics (see later), and benchmarks, where a benchmark was, in essence, a
logical formula to be checked for satisfiability with respect to some theory.

Version 2.0 seeks to improve the usefulness of the SMT-LIB standard by simplifying its
logical language while increasing its expressiveness and flexibility. In addition, it introduces
a command language for SMT solvers that expands their SMT-LIB interface considerably,
allowing users to tap the numerous functionalities that most modern SMT solvers provide.

Specifically, Version 2.0 defines:

• a language for writing terms and formulas in a sorted (i.e., typed) version of first-order
logic;

• a language for specifying background theories and fixing a standard vocabulary of sort,
function, and predicate symbols for them;

• a language for specifying logics, suitably restricted classes of formulas to be checked
for satisfiability with respect to a specific background theory;

• a command language for interacting with SMT solvers via a textual interface that
allows asserting and retracting formulas, querying about their satisfiability, examining
their models or their unsatisfiability proofs, and so on.



Chapter 2

Basic Assumptions and Structure

This chapter introduces the defining basic assumptions of the SMT-LIB standard and de-
scribes its overall structure.

2.1 Satisfiability Modulo Theories

The defining problem of Satisfiability Modulo Theories is checking whether a given (closed)
logical formula ϕ is satisfiable, not in general but in the context of some background theory T
which constrains the interpretation of the symbols used in ϕ. Technically, the SMT problem
for ϕ and T is the question of whether there is a model of T that makes ϕ true.

A dual version of the SMT problem, which we could call Validity Modulo Theories, asks
whether a formula ϕ is valid in some theory T , that is, satisfied by every model of T . As the
name suggests, SMT-LIB focuses only on the SMT problem. However, at least for classes
of formulas that are closed under logical negations, this is no restriction because the two
problems are inter-reducible: a formula ϕ is valid in a theory T exactly when its negation is
not satisfiable in the theory.

Informally speaking, SMT-LIB calls an SMT solver any software system that implements
a procedure for satisfiability modulo some given theory. In general, one can distinguish
among a solver’s

1. underlying logic, e.g., first-order, modal, temporal, second-order, and so on,

2. background theory, the theory against which satisfiability is checked,

3. input formulas, the class of formulas the solver accepts as input, and

4. interface, the set of functionalities provided by the solver.

For instance, in a solver for linear arithmetic the underlying logic is first-order logic with
equality, the background theory is the theory of real numbers, and the input language is
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often limited to conjunctions of inequations between linear polynomials. The interface may
be as simple as accepting a system of inequations and returning a binary response indicating
whether the system is satisfiable or not. More sophisticated interfaces include the ability
to return concrete solutions for satisfiable inputs, return proofs for unsatisfiable ones, allow
incremental and backtrackable input, and so on.

For better clarity and modularity, the aspects above are kept separate in SMT-LIB.
SMT-LIB’s commitments to each of them is described in the following.

2.2 Underlying Logic

Version 2.0 of the SMT-LIB format adopts as its underlying logic a version of many-sorted
first-order logic with equality. [Man93, Gal86, End01]. Like traditional many-sorted logic,
it has sorts (i.e., basic types) and sorted terms. Unlike that logic, however, it does not
have a syntactic category of formulas distinct from terms. Formulas are just sorted terms of
a distinguished Boolean sort, which is interpreted as a two-element set in every SMT-LIB
theory.1 Furthermore, the SMT-LIB logic uses a language of sort terms, as opposed to just
sort constants, to denote sorts: sorts can be denoted by sort constants like Int as well as
sort terms like (List (Array Int Real)). Finally, in addition to the usual existential and
universal quantifiers, the logic includes a let binder analogous to the local variable binders
found in many programming languages.

SMT-LIB’s underlying logic, henceforth SMT-LIB logic, provides the formal foundations
of the SMT-LIB standard. The concrete syntax of the logic is part of the SMT-LIB language
of formulas and theories, which is defined in Part II of this document. An abstract syntax
for SMT-LIB logic and the logic’s formal semantics are provided in Part III.

2.3 Background Theories

One of the goals of the SMT-LIB initiative is to clearly define a catalog of background
theories, starting with a small number of popular ones, and adding new ones as solvers for
them are developed.2 Theories are specified in SMT-LIB independently of any benchmarks
or solvers. On the other hand, each SMT-LIB script refers, indirectly, to one or more theories
in the SMT-LIB catalog.

This version of the SMT-LIB standard distinguishes between basic theories and combined
theories. Basic theories, such as the theory of real numbers, the theory of arrays, the theory
of lists and so on, are those explicitly defined in the SMT-LIB catalog. Combined theories
are defined implicitly in terms of basic theories by means of a general modular combination
operator. The difference between a basic theory and a combined one in SMT-LIB is entirely
operational. Some SMT-LIB theories, such as the theory of finite sets with a cardinality

1This is similar to some formulations of classical higher-order logic, such as that of [And86].
2 This catalog is available, separately from this document, from the SMT-LIB website (www.smt-lib.org).

www.smt-lib.org
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operator, are defined as basic theories, even if they are in fact a combination of smaller
theories, because they cannot be obtained by modular combination.

Theory specifications have mostly documentation purposes. They are meant to be stan-
dard references for human readers. For practicality then, the format insists that only the
signature of a theory (essentially, its set of sort and sorted function symbols) be specified
formally—provided it is finite.3 By “formally” here we mean written in a machine-readable
and processable format, as opposed to written in free text, no matter how rigorously. By this
definition, theories themselves are defined informally, in natural language. Some theories,
such as the theory of bit vectors, have an infinite signature. For them, the signature too is
specified informally in English.

2.4 Input Formulas

SMT-LIB adopts a single and general first-order (sorted) language in which to write logical
formulas. It is often the case, however, that SMT applications work with formulas expressed
in some particular fragment of the language. The fragment in question matters because one
can often write a solver specialized on that sublanguage that is a lot more efficient than a
solver meant for a larger sublanguage.4

An extreme case of this situation occurs when satisfiability modulo a given theory T is
decidable for a certain fragment (quantifier-free, say) but undecidable for a larger one (full
first-order, say), as for instance happens with the theory of arrays [BMS06]. But a similar
situation occurs even when the decidability of the satisfiability problem is preserved across
various fragments. For instance, if T is the theory of real numbers, the satisfiability in T
of full-first order formulas built with the symbols {0, 1,+, ∗, <,=} is decidable. However,
one can implement increasingly faster solvers by restricting the language respectively to
quantifier-free formulas, linear equations and inequations, difference inequations (inequations
of the form x < y + n), and inequations between variables [BBC+05].

Certain pairs of theories and input languages are very common in the field and are
often conveniently considered as a single entity. In recognition of this practice, the SMT-
LIB format allows one to pair together a background theory and an input language into a
sublogic, or, more briefly, logic. We call these pairs (sub)logics because, intuitively, each of
them defines a sublogic of SMT-LIB logic for restricting both the set of allowed models—to
the models of the background theory—and the set of allowed formulas—to the formulas in
the input language.

3 The finiteness condition can be relaxed a bit for signatures that include certain commonly used sets of
constants such as the set of all numerals.

4 By efficiency here we do not necessarily refer to worst-case time complexity, but to efficiency in practice.
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2.5 Interface

New to this version is a scripting language that defines a textual interface for SMT solvers.
SMT solvers implementing this interface act as interpreters of the scripting language. The
language is command-based, and defines a number of input/output functionalities that go
well beyond simply checking the satisfiability of an input formula. It includes commands for
setting various solver parameters, declaring new symbols, asserting and retracting formulas,
checking the satisfiability of the current set of asserted formulas, inquiring about models of
satisfiable sets, and printing various diagnostics.
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Chapter 3

The SMT-LIB Language

This chapter defines and explains the concrete syntax of the SMT-LIB standard, what we
comprehensively refer to as the the SMT-LIB language. The SMT-LIB language has three
main components: theory declarations, logic declarations, and scripts. Its syntax is similar
to that of the LISP programming language. In fact, every expression in this version is a legal
S-expression of Common Lisp [Ste90]. The choice of the S-expression syntax and the design
of the concrete syntax was mostly driven by the goal of simplifying parsing, as opposed to
facilitating human readability.(1)

The three main components of the language are defined in this chapter by means of BNF-
style production rules. The language generated by the given rules is actually a superset
of the SMT-LIB language. The legal expressions of the language must satisfy additional
constraints, such as well-sortedness, also specified in this document.

3.1 Lexicon

The permitted characters of SMT-LIB source files are a subset of the ASCII character set.
They consist of all letters, digits, whitespace characters, as well as the characters

~ ! @ # $ % ^ & * _ - + = | \ : ; " < > . ? / ( )

Characters between the semi-colon character ; and a line breaking character are comments—
and so are to be ignored by a lexical analyzer. Non-comment text is broken into tokens by
whitespace characters and the parenthesis characters ( and ). The language’s semantics
does not depend on indentation and spacing. There is no distinction between line breaks,
tabs, and spaces—all are treated as whitespace.

The other tokens besides ( and ) are 〈numeral〉, 〈decimal〉, 〈hexadecimal〉, 〈binary〉,
〈string〉, 〈symbol〉, and 〈keyword〉, all defined below.

Numerals. A 〈numeral〉 is the digit 0 or a non-empty sequence of digits not starting with
0 .
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Decimals. A 〈decimal〉 is a token of the form 〈numeral〉.0∗〈numeral〉 .

Hexadecimals. A 〈hexadecimal〉 is a non-empty case-insensitive sequence of digits and
letters from A to F preceded by the (case sensitive) characters #x .

#x0 #xA04

#x01Ab #x61ff

Binaries. A 〈binary〉 is a non-empty sequence of the characters 0 and 1 preceded by the
characters #b .

#b0 #b1

#b001 #b101011

Strings. A 〈string〉 is an ASCII string literal delimited by double quotes (") and possibly
containing C-style escaped characters: \", \n, and so on.

Symbols. A 〈symbol〉 is either a non-empty sequence of letters, digits and the characters
~ ! @ $ % ^ & * _ - + = < > . ? / that does not start with a digit, or a sequence of
printable ASCII characters, including white spaces, that starts and ends with | and does
not otherwise contain | .

+ <= x plus ∗∗ $ <sas <adf>

abc77 ∗$s&6 . kkk . 8

| this is a single symbol |

| |

| af klj ˆ∗(0 asfsfe2(&∗)&(#ˆ$>>>?” ’]]984|

Symbols are case sensitive. They are used mainly as operators or identifiers. Con-
ventionally, arithmetic characters and the like are used, individually or in combination, as
operator names; in contrast, alpha-numeric symbols, possibly with punctuation characters
and underscores, are used as identifiers. But, as in LISP, this usage is only recommended
(for human readability), not prescribed. For additional flexibility, arbitrary sequences of
printable characters enclosed in vertical bars are also allowed as symbols.
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Keywords. A 〈keyword〉 is a non-empty sequence of letters, digits, and the characters
~ ! @ $ % ^ & * _ - + = < > . ? / preceded by the character : .

Elements of this category have a reserved use in the language. They are used as attribute
names or option names (see later).

: date : a2 : foo−bar
:<= :56 :−>

The syntax rules in this chapter are given directly with respect to streams of tokens from
the set above. The whole set of concrete syntax rules is also available for easy reference in
Appendix B.

3.2 S-expressions

An S-expression is either a non-parenthesis token or a (possibly empty) sequence of S-
expressions enclosed in parentheses. Every syntactic category of the SMT-LIB language
is a specialization of the category 〈s expr〉 defined by the production rules below.

〈spec const〉 ::= 〈numeral〉 | 〈decimal〉 | 〈hexadecimal〉 | 〈binary〉 | 〈string〉
〈s expr〉 ::= 〈spec constant〉 | 〈symbol〉 | 〈keyword〉 | ( 〈s expr〉∗ )

Remark 1. Elements of the 〈spec const〉 category do not always have the expected asso-
ciated semantics in the SMT-LIB language (i.e., elements of 〈numeral〉 denoting integers,
elements of 〈string〉 denoting character strings, and so on) In particular, in the 〈term〉
category (defined later) they simply denote constant symbols, with no fixed, predefined se-
mantics. Their semantics is determined locally by each SMT-LIB theory that uses them. For
instance, it is possible in principle for an SMT-LIB theory of sets to use the numerals 0 and
1 to denote respectively the empty set and universal set. Similarly, the elements of 〈binary〉
may denote integers modulo n in one theory and binary strings in another; the elements of
〈decimal〉 may denote rational numbers in one theory and floating point values in another.

3.3 Identifiers

When defining certain SMT-LIB theories it is convenient to have indexed symbols as identi-
fiers. Instead of having a special token syntax for that, indexed identifiers are defined more
systematically as the application of the reserved symbol _ to a symbol and one or more
indices, given by numerals.

〈identifier〉 ::= 〈symbol〉 | ( 〈symbol〉 〈numeral〉+ )
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There are several namespaces for identifiers (sorts, terms, commands, . . . ). Identifiers in
different namespaces can share names with no risk of conflict because the particular names-
pace can always be identified syntactically. Within the term namespace, bound variables
can shadow one another as well as function symbol names. Similarly, bound sort parameters
can shadow one another and sort symbol names.

3.4 Attributes

Several syntactic categories in the language contain attributes. These are generally pairs
consisting of an attribute name and an associated value, although attributes with no value
are also allowed.

Attribute names belong to the 〈keyword〉 category. Attribute values are in general S-
expressions other than keywords, although most predefined attributes use a more restricted
category for their values.

〈attribute value〉 ::= 〈spec constant〉 | 〈symbol〉 | ( 〈s expr〉∗ )
〈attribute〉 ::= 〈keyword〉 | 〈keyword〉 〈s expr〉

: left−assoc
: status unsat

: my_attribute ( humpty dumpty )
: authors ”Jack and Jill”

3.5 Sorts

A major subset of the SMT-LIB language is the language of well-sorted terms, used to
represent logical expressions. Such terms are typed, or sorted in logical terminology; that
is, each is associated with a (unique) sort. The set of sorts consists itself of sort terms. In
essence, a sort term is a sort symbol, a sort parameter, or a sort symbol applied to a sequence
of sort terms.

Syntactically, a sort symbol can be either the distinguished symbol Bool or any 〈identifier〉.
A sort parameter can be any 〈symbol〉 (which in turn, is an 〈identifier〉).

〈sort〉 ::= Bool | 〈identifier〉 | ( 〈identifier〉 〈sort〉+ )

Int Bool

(_ BitVec 3) ( List ( Array Int Real ) )

( ( _ FixedSizeList 4) Real ) ( Set (_ Bitvec 3) )



3.6. TERMS AND FORMULAS 23

3.6 Terms and Formulas

Well-sorted terms are a subset of the set of all terms. The latter are constructed out of
constant symbols in the 〈spec const〉 category (numerals, rationals, strings, etc.), variables,
function symbols, a distinguished symbol for equality and one for disequality (respectively =

and distinct), three kinds of binders, and an annotation operator (!).

A variable can be any 〈symbol〉, while a function symbol can be any 〈identifier〉 (i.e.,
a symbol or an indexed symbol). As explained later, every function symbol f is separately
associated with one or more ranks, each specifying the sort of f ’s arguments and result. To
simplify sort checking, a function symbol in a term can be annotated with one of its result
sorts σ. Such an annotated function symbol is a qualified identifier of the form (as f σ).

In this version, formulas are well-sorted terms of sort Bool. As a consequence, there
is no syntactic distinction between function and predicate symbols. The latter are simply
function symbols whose result sort is Bool.

〈qual identifier〉 ::= 〈identifier〉 | ( as 〈identifier〉 〈sort〉 )
〈var binding〉 ::= ( 〈symbol〉 〈term〉 )
〈sorted var〉 ::= ( 〈symbol〉 〈sort〉 )
〈term〉 ::= 〈spec constant〉 | 〈qual identifier〉

| ( 〈qual identifier〉 〈term〉+ )

| ( distinct 〈term〉 〈term〉+ )

| ( let ( 〈var binding〉+ ) 〈term〉 )
| ( forall ( 〈sorted var〉+ ) 〈term〉 )
| ( exists ( 〈sorted var〉+ ) 〈term〉 )
| ( ! 〈term〉 〈attribute〉+ )

( forall ( ( x ( List Int ) ) (y ( List Int ) ) )
(= ( append x y )

( ite (= x (as nil ( List Int ) ) )
y

( let ( ( h ( head x ) ) (t ( tail x ) ) )
( insert h ( append t y ) ) ) ) ) )

In its simplest form, a term is either a special constant symbol, a variable, or a function
symbol applied to zero or more terms. Function symbols applied to no arguments are used
as constant symbols. Only the predefined function symbol distinct applies to a variable
number of arguments (two or more). Informally, a term like (distinct t1 · · · tn) states
that t1, . . . , tn have pairwise distinct values.(2)
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Binders. More complex terms include let, forall and exists binders. The forall and
exists binders correspond to the usual existential and universal quantifiers of first-order
logic, except that the variables they quantify are sorted. A let binder introduces and
defines one or more local variables in parallel. Semantically, a term of the form

(let ((x1 t1) · · · (xn tn)) t)

is equivalent to the term obtained from t by simultaneously replacing each free occurrence of
xi in t by ti, for each i = 1, . . . , n, possibly after a suitable renaming of t’s bound variables
to avoid variable capturing. The language does not have a sequential version of let. Its
effect is achieved by nesting lets, as in

(let ((x1 t1)) (let ((x2 t2)) t))

All binders follow a lexical scoping discipline, enforced by SMT-LIB logic’s semantics as
described in Section 4.3. Note that all variables bound by a binder are elements of the
〈symbol〉 category—they cannot be indexed identifiers.

Annotations. Every term t can be optionally annotated with one or more attributes
α1, . . . , αn using the wrapper expression (! t α1 · · · αn). Term attributes have no logi-
cal meaning—semantically (! t α1 · · · αn) is equivalent to t—but they are a convenient
mechanism for adding meta-logical information for SMT solvers. Currently there is only
one predefined term attribute, with keyword :named and values from the 〈symbol〉 category.
This attribute can be used in scripts to give a closed term a symbolic name, which can be
then used as a proxy for the term (see Section 5.1). Although not part of the standard yet,
other examples of term annotations are instantiation patterns for quantifiers. Instantiation
patterns provide heuristic information to SMT solvers that do quantifier instantiation.

(=> ( ! (> x y ) : named $p1 )
( ! (= x z ) : named $p2 ) )

( forall ( ( x0 A ) (x1 A ) (x2 A ) )
( ! (=> ( and (r x0 x1 ) (r x1 x2 ) ) (r x0 x2 ) )

: pattern ( ( r x0 x1 ) (r x1 x2 ) )
: pattern ( ( p x0 a ) )

) )

Well-sortedness requirements. As mentioned, all terms of the SMT-LIB language are
additionally required to be well-sorted. Well-sortedness constraints are discussed in Sec-
tion 4.2 in terms of the logic’s abstract syntax.



3.7. THEORY DECLARATIONS 25

3.7 Theory Declarations

The set of SMT-LIB theories is defined by a catalog of theory declarations written in the
format specified in this section. This catalog may be found at www.smtlib.org. In the
previous version of the SMT-LIB standard, a theory declaration defined both a many-sorted
signature, i.e., a collection of sorts and sorted function symbols, and a theory with that
signature. The signature was determined by the collection of individual declarations of sort
symbols and function symbols with an associated rank—specifying the sorts of the symbol’s
arguments and of its result.

In Version 2.0, theory declarations are similar to those of Version 1.2, except that they
may declare entire families of overloaded function symbols by using ranks that contain sort
parameters, locally scoped sort symbols of arity 0. Additionally, a theory declaration now
generally defines a class of similar theories—as opposed to a single theory as in Version 1.2.

The syntax of theory declarations follows an attribute-value-based format. A theory dec-
laration consists of a theory name and a list of 〈attribute〉 elements. Theory attributes with
the following predefined keywords have a prescribed usage and semantics: :definition,
:funs, :funs-description, :notes, :sorts, :sorts-description, and :values. Addi-
tionally, a theory declaration can contain any number of user-defined attributes.(3)

Theory attributes can be formal or informal depending on whether or not their value has
a formal semantics and can be processed in principle automatically. The value of an informal
attribute is free text, in the form of a 〈string〉 value. For instance, :funs, :sorts, and
:axioms attributes are formal in the sense above, while :definition, :funs-description
and :sorts-description attributes are not.

〈sort symbol decl〉 ::= ( 〈identifier〉 〈numeral〉 〈attribute〉∗ )
〈meta spec constant〉 ::= NUMERAL | DECIMAL | STRING
〈fun symbol decl〉 ::= ( 〈spec constant〉 〈sort〉 〈attribute〉∗ )

| ( 〈meta spec constant〉 〈sort〉 〈attribute〉∗ )
| ( 〈identifier〉 〈sort〉+ 〈attribute〉∗ )

〈par fun symbol decl〉 ::= 〈fun symbol decl〉
| ( par ( 〈symbol〉+ )

( 〈identifier〉 〈sort〉+ 〈attribute〉∗ ) )

〈theory attribute〉 ::= :sorts ( 〈sort symbol〉+ )

| :funs ( 〈par fun symbol decl〉+ )

| :sorts-description 〈string〉
| :funs-description 〈string〉
| :definition 〈string〉
| :values 〈string〉
| :notes 〈string〉
| 〈attribute〉

〈theory decl〉 ::= ( theory 〈symbol〉 〈theory attribute〉+ )

www.smtlib.org
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A theory declaration (theory T α1 · · · αn) defines a theory schema with name T
and attributes α1, . . . , αn. Each instance of the schema is a theory TΣ with an expanded
signature Σ, containing (zero or more) additional sort and function symbols with respect to
those declared in T . Examples of instances of theory declarations are discussed below.

The value of a :sorts attribute is a non-empty sequence of sort symbol declarations
〈sort symbol decl〉. A sort symbol declaration (s n α1 · · · αn) declares a sort symbol s of
arity n, and may additionally contain zero or more annotations α1, . . . , αn, each in the form
of an 〈attribute〉. In this version, there are no predefined annotations for sort declarations.

The value of a :funs attribute is a non-empty sequence of possibly parametric function
symbol declarations 〈par fun symbol decl〉. A (non-parametric) function symbol declaration
〈fun symbol decl〉 of the form (c σ), where c is an element of 〈spec constant〉, declares c to
have sort σ. For convenience, it is possible to declare all the special constants in 〈numeral〉
to have sort σ by means of the function symbol declaration (NUMERAL σ). This is done
for instance in the theory declaration in Figure 3.2. The same can be done for the set of
〈decimal〉 and 〈string〉 constants by using DECIMAL and STRING, respectively.

A (non-parametric) function symbol declaration (f σ1 · · · σn σ) with n ≥ 0 declares
a function symbol f with rank σ1 · · ·σnσ. Intuitively, this means that f takes as input n
values of respective sort σ1, . . . , σn, and returns a value of sort σ. On the other hand, a
parametric function symbol declaration (par (u1 · · · uk) (f τ1 · · · τn τ)) with k > 0
and n ≥ 0, declares a whole class of function symbols, all named f and each with a rank
obtained from τ1 · · · τnτ by instantiating each occurrence in τ1 · · · τnτ of the sort parameters
u1, . . . , uk with non-parametric sorts. See Section 4.4 for more details.

As with sorts, each (parametric) function symbol declaration may additionally contain
zero or more annotations α1, . . . , αn, each in the form of an 〈attribute〉.

In this version, there are only three predefined function symbol annotations, all attributes
with no value: :chainable, :left-assoc, and :right-assoc. The declaration of a theory
function symbol f of the form:

• (f σ1 σ2 σ1) or (par (u1 · · · uk) (f τ1 τ2 τ1)),

• (f σ1 σ2 σ2) or (par (u1 · · · uk) (f τ1 τ2 τ2)), or

• (f σ σ Bool) or (par (u1 · · · uk) (f τ τ Bool)),

and only such declarations, may be annotated respectively with :left-assoc, :right-assoc,
and :chainable. Then, a term of the form (f t1 · · · tn) is syntactic sugar respectively
for:

• (f · · · (f (f t1 t2) t3) · · · tn),

• (f t1 (f t2 · · · (f tn−1 tn) · · · ),

• (and (f t1 t2) · · · (f tn−1 tn)) where and is itself a symbol declared as :left-assoc
in every theory (see Subsection 3.7.1).
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(+ Real Real Real : left−assoc )

( par (X ) ( cons X ( List X ) ( List X ) : right−assoc ) )

( and Bool Bool Bool : left−assoc )

(< Real Real Bool : chainable )

( equiv A A Bool : chainable )

For many theories in SMT-LIB, in particular those with a finite signature, it is possible to
declare all of their symbols using a finite number of sort and function symbol declarations in
:sorts and :funs attributes. For others, such as for instance, the theory of bit vectors, one
would need infinitely many such declarations. In those cases, sort symbols and function sym-
bols are defined informally, in plain text, in :sorts-description, and :funs-description

attributes, respectively.(4)

: sorts_description
”All sort symbols of the form (_ BitVec m ) with m > 0 .”

: funs_description
”All function symbols with rank of the form

( concat (_ BitVec i ) (_ BitVec j ) (_ BitVec m ) )

where i , j > 0 and i + j = m . ”

The :definition attribute is meant to contain a natural language definition of the
theory. While this definition is expected to be as rigorous as possible, it does not have to be
a formal one.(5) For other theories, a mix of formal notation and natural language might be
more appropriate. In the presence of parametric function symbol declarations, the definition
must also specify the meaning of each instance of the declared symbol.(6)

The attribute :values is used to identify for each sort σ in a certain class of sorts, a
particular set of ground terms of sort σ that are to be considered as values for σ. Intuitively,
given an instance theory containing a sort σ, a set of values for σ is a set of terms (of sort σ)
that denotes, in each model of the theory, all the elements of that sort. These terms might
be over a signature with additional function symbols with respect to those specified in the
theory declaration. See the next subsection of examples of value sets, and Section 4.5 for a
more in-depth explanation.
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The attribute :notes is meant to contain documentation information on the theory
declaration such as authors, date, version, references, etc., although this information can
also be provided with more specific, user-defined attributes.

Constraint 1 (Theory Declarations). The only legal theory declarations of the SMT-LIB
language are those that satisfy the following restrictions.

1. They contain exactly one instance of the :definition attribute1.

2. Each sort symbol used in a :funs attribute is previously declared in some :sorts

attribute.

3. The definition of the theory, however provided in the :definition attribute, refers
only to sort and function symbols previously declared formally in :sorts and :funs

attributes or informally in :sorts-description and :funs-description attributes.

4. In each parametric function symbol declaration (par (u1 · · · uk) (f τ1 · · · τn τ)),
any symbol other than f that is not a previously declared sort symbol must be one of
the sort parameters u1, . . . , uk.

5. The terms listed in an :axioms attribute are well-sorted closed formulas built with sort
and function symbols previously declared in :sorts, :funs, :sorts-description and
:funs-description attributes.

The :funs attribute is optional in a theory declaration because a theory might lack
function symbols.2

3.7.1 Examples

Core theory

To provide the usual set of Boolean connectives for building formulas, in addition to the
predefined logical symbol distinct, Version 2.0 defines a basic core theory which is implicitly
included in every other SMT-LIB theory.(7) Concretely, every theory declaration is assumed
to contain implicitly the :sorts and :funs attributes of the Core theory declaration shown
in Figure 3.1, and to define the symbols in those attributes in the same way as in Core.

Note the absence of a symbol for double implication. Such a connective is superfluous
because now the equality symbol = can be used in its place. The if then else connective
of Version 1.2 is also absent for a similar reason.

The simplest instance of Core is the theory with no additional sort and function symbols.
In that theory there is only one sort, Bool, and ite has only one rank, (ite Bool Bool

Bool), and plays the role played by the if then else connective in Version 1.2. In other

1 Which makes that attribute non-optional.
2 Although such a theory would not be not very interesting.
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(theory Core

:sorts ((Bool 0))

:funs ((true Bool) (false Bool) (not Bool Bool)

(=> Bool Bool Bool :right-assoc) (and Bool Bool Bool :left-assoc)

(or Bool Bool Bool :left-assoc) (xor Bool Bool Bool :left-assoc)

(par (A) (= A A Bool)) (par (A) (ite Bool A A))

)

:definition

"For every expanded signature Sigma, the instance of Core with that signature

is the theory consisting of all Sigma-models in which:

- the sort Bool denotes the set {true, false} of Boolean values;

- for all sorts s in Sigma, (= s s Bool) denotes the function that

returns true iff its two arguments are identical;

- for all sorts s in Sigma, (ite Bool s s) denotes the function that

returns its second argument or its third depending on whether

its first argument is true or not;

- the other function symbols of Core denote the standard Boolean operators

as expected.

"

:values "The Bool values are the terms true and false."

)

Figure 3.1: The Core theory declaration.

words, this is just the theory of the Booleans with the standard Boolean operators plus ite.
The set of values for the Bool sort is, predictably, {true, false}.

Another instance has a single additional sort symbol U, say, of arity 0, and a (possibly
infinite) set number of function symbols with rank in U +. This theory corresponds to
EUF, the (one-sorted) theory of equality and uninterpreted functions (over those function
symbols). In this theory, ite has two ranks: (ite Bool Bool Bool) and (ite Bool U U).
A many-sorted version of EUF is obtained by instantiating Core with more than one nullary
sort symbol—and possibly additional function symbols over the resulting sort set.

Yet another instance is the theory with an additional unary sort symbol List and an
additional number of function symbols. This theory has infinitely many sorts: Bool, (List
Bool), (List (List Bool)), etc. However, by the definition of Core, all those sorts and
function symbols are still “uninterpreted” in the theory. In essence, this theory is the same
as a many-sorted version of EUF with infinitely many sorts. While not very interesting in
isolation, the theory is useful in combination with a theory of lists that, for each sort σ,
interprets (List σ) as the set of all lists over σ. The combined theory in that case is a
theory of lists with uninterpreted functions.
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(theory Integers

:sorts ((Int 0))

:funs ((NUMERAL Int)

(- Int Int) ; negation

(- Int Int Int :left-assoc) ; subtraction

(+ Int Int Int :left-assoc)

(* Int Int Int :left-assoc)

(<= Int Int Bool :chainable)

(< Int Int Bool :chainable)

(>= Int Int Bool :chainable)

(> Int Int Bool :chainable)

)

:definition

"For every expanded signature Sigma, the instance of Integers with that

signature is the theory consisting of all Sigma-models that interpret

- the sort Int as the set of all integers,

- the function symbols of Integers as expected.

"

:values

"The Int values are all the numerals and all the terms of the form (- n)

where n is a non-zero numeral."

)

Figure 3.2: The Integers theory declaration.

Integers

The theory declaration of Figure 3.2 defines all theories that extend the standard theory
of the (mathematical) integers to additional uninterpreted sort and function symbols. The
integers theory proper is the instance with no additional symbols. More precisely, since the
Core theory declaration is implicitly included in every theory declaration, that instance is
the two-sorted theory of the integers and the Booleans. The set of values for the Int sorts
consists of all numerals and all terms of the form (- n) where n is a numeral other than 0.

Arrays with extensionality

A schematic version of the theory of functional arrays with extensionality is defined in the
theory declaration ArraysEx in Figure 3.3. Each instance gives a theory of (arbitrarily
nested) arrays. For instance, with the addition of the nullary sort symbols Int and Real, we
get an instance theory whose sort set S contains, inductively, Bool, Int, Real and all sorts
of the form (Array σ1 σ2) with σ1, σ2 ∈ S. This includes flat array sorts such as

(Array Int Int), (Array Int Real), (Array Real Int), (Array Bool Int),

conventional nested array sorts such as
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(theory ArraysEx

:sorts ((Array 2))

:funs ((par (X Y) (select (Array X Y) X Y))

(par (X Y) (store (Array X Y) X Y (Array X Y)))

)

:notes

"A schematic version of the theory of functional arrays with extensionality."

:definition

"For every expanded signature Sigma, the instance of ArraysEx with that

signature is the theory consisting of all Sigma-models that satisfy all

axioms of the form below, for all sorts s1, s2 in Sigma:

- (forall ((a (Array s1 s2)) (i s1) (e s2))

(= (select (store a i e) i) e))

- (forall ((a (Array s1 s2)) (i s1) (j s1) (e s2))

(implies (distinct i j) (= (select (store a i e) j) (select a j))))

- (forall ((a (Array s1 s2)) (b (Array s1 s2)))

(implies

(forall ((i s1)) (= (select a i) (select b i))) (= a b)))

"

)

Figure 3.3: The ArraysEx theory declaration.

(Array Int (Array Int Real)),

as well as nested sorts such as

(Array (Array Int Real) Int), (Array (Array Int Real) (Array Real Int))

with an array sort in the index position of the outer array sort.(8)

The function symbols of the theory include all symbols with name select and rank of
the form ((Array σ1 σ2) σ1 σ2) for all σ1, σ2 ∈ S. Similarly for store.

Remark 2. For some applications, the instantiation mechanism defined here for theory
declarations will definitely over-generate. For instance, it is not possible to define by instan-
tiation of the ArraysEx declaration a theory of just the arrays of sort (Array Int Real),
without all the other nested array sorts over {Int, Real}.

This, however, is a problem neither in theory nor in practice. It is not a problem in
practice because, since a script can only use formulas with non-parametric sorts3, any theory
sorts that are not used in a script are, for all purposes, irrelevant. It is not a problem in
theory either because scripts refer to logics, not directly to theories. And the language of
a logic can always be restricted to contain only a selected subset of the sorts in the logic’s
theory.

3 Note that sort parameters cannot occur in a formula.
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3.8 Logic Declarations

The SMT-LIB format allows the explicit definition of sublogics of its main logic— a version
of many-sorted first-order logic with equality—that restrict both the main logic’s syntax and
semantics. A new sublogic, or simply logic, is defined in the SMT-LIB language by a logic
declaration; see www.smtlib.org for the current catalog. Logic declarations have a similar
format to theory declarations, although most of their attributes are informal.(9)

Attributes with the following predefined keywords have a prescribed usage and semantics
in logic declarations: :theories, :language, :extensions, :notes, and :values. Addi-
tionally, as with theories, a logic declaration can contain any number of user-defined at-
tributes.

〈logic attribute〉 := :theories ( 〈symbol〉+ )

| :language 〈string〉
| :extensions 〈string〉
| :values 〈string〉
| :notes 〈string〉
| 〈attribute〉

〈logic〉 ::= ( logic 〈symbol〉 〈logic attribute〉+ )

A logic declaration (logic L α1 · · · αn) defines a logic with name L and attributes
α1, . . . , αn.

Constraint 2 (Logic Declarations). The only legal logic declarations in the SMT-LIB lan-
guage are those that satisfy the following restrictions:

1. They include exactly one instance of the theories attribute and of the language
attribute.

2. The value T1, . . . , Tn of the theories attribute lists names of theory schemas that have
a declaration in SMT-LIB.

3. If two theory declarations among T1, . . . , Tn declare the same sort symbol, they give it
the same arity.

When the value of the :theories attribute is (T1 · · · Tn), with n > 0, the logic refers
to a combination T of specific instances of the theory declaration schemas T1, . . . , Tn. The
exact combination mechanism that yields T is defined formally in Section 4.5. The effect
of this attribute is to declare that the logic’s sort and function symbols consist of those of
the combined theory T , and that the logic’s semantics is restricted to the models of T , as
specified in more detail in Section 4.5.

The :language attribute describes in free text the logic’s language, a specific class of
SMT-LIB formulas. This information is useful for tailoring SMT solvers to the specific
sublanguage of formulas used in an input script.(10) The formulas in the logic’s language

www.smtlib.org
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are built over (a subset of) the signature of the associated theory T , as specified in this
attribute.

The optional :extensions attribute is meant to document any notational conventions,
or syntactic sugar, allowed in the concrete syntax of formulas in this logic.(11)

The :values attribute has the same use as in theory declarations but it refers to the
specific theories and sorts of the logic. It is meant to complement the :values attribute
specified in the theory declarations referred to in the :theories attribute.

The textual :notes attribute serves the same purpose as in theory declarations.

3.8.1 Examples

Propositional Logic

Standard propositional logic can be readily defined by an SMT-LIB logic declaration. The
logic’s theory is the instance of the Core theory declaration whose signature adds infinitely-
many function symbols of arity Bool (playing the role of propositional variables). The
language consists of all binder-free formulas over the expanded signature. Extending the
language with let binders allows a faithful encoding of BDD’s as formulas, thanks to the ite

operator of Core.

Quantified Boolean Logic

The logic of quantifier Boolean formulas (QBFs) can be defined as well. The theory is again
an instance of Core but this time with no additional symbols at all. The language consists
of (closed) quantified formulas all of whose variables are of sort Bool.

Linear Integer Arithmetic

Linear integer arithmetic can be defined as an SMT-LIB logic. This logic is indeed part of
the official SMT-LIB catalog of logics and is called QF LIA there. Its theory is an extension
of the theory of integers and the Booleans with uninterpreted constant symbols. That is,
the instance of the theory declaration Integers from Figure 3.2 whose signature adds to the
symbols of Integers infinitely many free constants, new function symbols of rank Int and
of rank Bool.

The language of the logic is made of closed quantifier-free formulas (over the theory’s
signature) containing only linear atoms, that is, atomic formulas with no occurrences of the
function symbol *. Extensions of the basic language include expressions of the form (* n
t) and (* t n), for some numeral n > 1, both of which abbreviate the term (+ t · · · t)
with n occurrences of t. Also included are terms with negative integer coefficients, that is,
expressions of the form (* (- n) t) or (* t (- n)) for some numeral n > 1, both of which
abbreviate the expression (- (* n t)).
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3.9 Scripts

Scripts are sequences of commands. In line with the LISP-like syntax, all commands look like
LISP-function applications, with a command name applied to zero or more arguments. To
facilitate processing, each command takes a constant number of arguments, although some
of these arguments can be (parenthesis delimited) lists of variable length.

The intended use of scripts is to communicate with an SMT-solver in a read-eval-print
loop: until a termination condition occurs, the solver reads the next command, acts on it,
prints a response, and repeats. Possible responses vary from a single symbol to a list of
attributes, to complex expressions like proofs.

〈command〉 ::= ( set-logic 〈symbol〉 )
| ( set-option 〈option〉 )
| ( set-info 〈attribute〉 )
| ( declare-sort 〈symbol〉 〈numeral〉 )
| ( define-sort 〈symbol〉 ( 〈symbol〉∗ ) 〈sort〉 )
| ( declare-fun 〈symbol〉 ( 〈sort〉∗ ) 〈sort〉 )
| ( define-fun 〈symbol〉 ( 〈sorted var〉∗ ) 〈sort〉 〈term〉 )
| ( push 〈numeral〉 )
| ( pop 〈numeral〉 )
| ( assert 〈term〉 )
| ( check-sat )

| ( get-assertions )

| ( get-proof )

| ( get-unsat-core )

| ( get-value ( 〈term〉+ ) )

| ( get-assignment )

| ( get-option 〈keyword〉 )
| ( get-info 〈info flag〉 )
| ( exit )

〈script〉 ::= 〈command〉∗

The command set-option takes as argument expressions of the syntactic category
〈option〉 which have the same form as attributes with values. Options with the predefined
keywords below have a prescribed usage and semantics. Additional, solver-specific options
are also allowed.
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〈b value〉 ::= true | false

〈option〉 ::= :print-success 〈b value〉
| :expand-definitions 〈b value〉
| :interactive-mode 〈b value〉
| :produce-proofs 〈b value〉
| :produce-unsat-cores 〈b value〉
| :produce-models 〈b value〉
| :produce-assignments 〈b value〉
| :regular-output-channel 〈string〉
| :diagnostic-output-channel 〈string〉
| :random-seed 〈numeral〉
| :verbosity 〈numeral〉
| 〈attribute〉

The command get-info takes as argument expressions of the syntactic category 〈info flag〉
which are flags with the same form as keywords. The predefined flags below have a prescribed
usage and semantics.

〈info flag〉 ::= :error-behavior

| :name

| :authors

| :version

| :status

| :reason-unknown

| 〈keyword〉
| :all-statistics

Additional, solver-specific flags are also allowed. Examples might be, for instance, flags
such as :time and :memory, referring to used resources, or :decisions, :conflicts, and
:restarts, referring to typical statistics for SMT solvers based on some extension of the
DPLL procedure.

Command responses

The possible responses from commands are defined as follows, where 〈gen response〉 defines
a general command response. In place of success, some commands provide a more specific
response. These responses are defined by

• 〈gi response〉 for get-info,

• 〈cs response〉 for check-sat,

• 〈ga response〉 for get-assertions,



36 Chapter 3. The SMT-LIB Language

• 〈gp response〉 for get-proof,

• 〈guc response〉 for get-unsat-core,

• 〈gv response〉 for get-value,

• 〈gta response〉 for get-assignment.

〈gen response〉 ::= unsupported | success | ( error 〈string〉 )

〈error-behavior〉 ::= immediate-exit | continued-execution
〈reason-unknown〉 ::= timeout | memout | incomplete
〈status〉 ::= sat | unsat | unknown
〈info response〉 ::= :error-behavior 〈error-behavior〉

| :name 〈string〉
| :authors 〈string〉
| :version 〈string〉
| :status 〈status〉
| :reason-unknown 〈reason-unknown〉
| 〈attribute〉

〈gi response〉 ::= ( 〈info response〉+ )

〈cs response〉 ::= 〈status〉

〈ga response〉 ::= ( 〈term〉∗ )

〈proof 〉 ::= 〈s expr〉
〈gp response〉 ::= 〈proof 〉

〈guc response〉 ::= ( 〈symbol〉∗ )

〈valuation pair〉 ::= ( 〈term〉 〈term〉 )
〈gv response〉 ::= ( 〈valuation pair〉+ )

〈t valuation pair〉 ::= ( 〈symbol〉 〈b value〉 )
〈gta response〉 ::= ( 〈t valuation pair〉∗ )

A full presentation of the semantics of these commands, in terms of abstract syntax, is
given in Chapter 5. We briefly highlight here, however, several points, and then provide a
couple of a examples.
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Assertion-set stack. Conforming solvers respond to various commands by performing
operations on a data structure called the assertion-set stack. This is a single global stack,
where each element on the stack is a set of assertions. Assertions include both logical formulas
(that is, terms of Boolean type), as well as declarations and definitions of sort symbols and
function symbols. Such declarations and definitions are thus local: popping an assertion
set from the assertion-set stack removes all declarations and definitions contained in that
set. This feature supports the removal of definitions and declarations, without recourse to
undefining or shadowing, neither of which are supported or allowed.

Declared/defined symbols. Sort and function symbols introduced with a declaration or
a definition cannot begin with a dot (.) (such symbols are reserved for future use) or with
@ (such symbols are reserved for solver-defined abstract values).

Solver output. Solvers respond to commands with the responses defined above. General
responses 〈gen response〉 are used unless more specific responses are specified, for exam-
ple for get-info (〈gi response〉) or get-value (〈gv response〉). Regular output, includ-
ing error messages, is printed on the regular output channel ; diagnostic output, including
warnings or progress information, on the diagnostic output channel. These may be set
using set-option and the corresponding attributes (the :regular-output-channel and
:diagnostic-output-channel attributes). The values of these attributes should be (double-
quote delimited) file names in the format specified by the POSIX standard.4 The strings
"stdout" and "stderr" are reserved to refer specially to the corresponding standard process
channels (not disk files of the same name).

Whitespace and responses. The following requirement is in effect for all responses: any
response which is not double-quoted and not parenthesized should be followed by at least
one whitespace character (for example, a newline). This will enable applications reading
the solver’s response output to know when an identifier (like success) has been completely
printed. For example, this is needed if one wants to use an off-the-shelf S-expression parser
(e.g., read in Common Lisp) to read responses.

Remark 3. Unlike version 1.2 of the SMT-LIB format, the current specification does not
have a separate syntactic category of benchmarks. Instead, declarative information is in-
cluded in scripts via the set-info command. See Section 5.4.3 below for more on this.

For more on error behavior, the meanings of the various options and info names, and the
semantics of additional commands like get-unsat-core, please see Chapter 5.
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(set-logic QF_LIA)

; success

(declare-fun w () Int)

; success

(declare-fun x () Int)

; success

(declare-fun y () Int)

; success

(declare-fun z () Int)

; success

(assert (> x y))

; success

(assert (> y z))

; success

(set-option :print-success false)

(push 1)

(assert (> z x))

(check-sat)

; unsat

(get-info :all-statistics)

; (:time 0.01 :memory 0.2)

(pop 1)

(push 1)

(check-sat)

; sat

(exit)

Figure 3.4: Example script, over two columns (i.e. commands in the first column precede
those in the second column), with solver responses in comments.

...

(set-option :print-success false)

(declare-fun x () Int)

(declare-fun y () Int)

(declare-fun f (Int) Int)

(assert (= (f x) (f y)))

(assert (not (= x y)))

(check-sat)

; sat

(get-value (x y))

; ((x 0)

; (y 1)

; )

(declare-fun a () (Array Int (List Int)))

...

(check-sat)

; sat

(get-value (a))

; ((a @_0_1)

; )

(get-value (select 2 @_0_1))

; (((select 2 @_0_1) @_2_0)

; )

(get-value ((first @_2_0) (rest @_2_0)))

; (((first @_2_0) 1)

; ((rest @_2_0) nil)

; )

Figure 3.5: Another example script (excerpt), with solver responses in comments.
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Example Scripts

We demonstrate some allowed behavior of an imagined solver in response to an example
script. Each command is followed by example legal output from the solver in a comment, if
there is any. The script in Figure 3.4 makes two background assertions, and then conducts
two independent queries. The get-info command requests information on the search using
the :all-statistics flag.5 The script in Figure 3.5 uses the get-value command to get
information about a particular model of the formula which the solver has reported satisfiable.

4 This is the usual format adopted by all Unix-based operating systems, with / used as a separator for
(sub)directories, etc.

5 Since output of (get-info :all-statistics) is solver-specific, the response reported in the script is
for illustration purposes only.
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Chapter 4

SMT-LIB Logic

In this version of the SMT-LIB standard, the underlying logic is still a variant of many-sorted
first-order logic (FOL) with equality [Man93, Gal86, End01], although it now incorporates
some features of higher-order logics; in particular, the identification of formulas with terms
of a distinguished Boolean sort, and the use of sort symbols of arity greater than 0.

These features make for a more flexible and syntactically more uniform logical language.
However, while not exactly syntactic sugar, they do not change the essence of SMT-LIB
logic with respect to traditional many-sorted FOL. Quantifiers are still first-order, the sort
structure is flat (no subsorts), the logic’s type system has no function (arrow) types, no
type quantifiers, no dependent types, no provisions for parametric or subsort polymorphism.
The only polymorphism is of the ad-hoc variety (a function symbol can be given more
than one rank), although there is a syntactical mechanism for approximating parametric
polymorphism. As a consequence, all the classical meta-theoretic results from many-sorted
FOL apply to SMT-LIB logic as well.

To define SMT-LIB logic and its semantics it is convenient to work with a more abstract
syntax than the concrete S-expression-based syntax of the SMT-LIB language. The formal
semantics of concrete SMT-LIB expressions is then given by means of a translation into this
abstract syntax. A formal definition of this translation is provided in Appendix D. The
translation also maps concrete predefined symbols and keywords to their abstract counter-
part. To facilitate reading, usually the abstract version of a predefined concrete symbol
is denoted by the symbol’s name in Roman bold font (e.g., Bool for Bool). Similarly for
keywords (e.g., definition for :definition).

To define our target abstract syntax we start by fixing the following sets of (abstract)
symbols and values:

• an infinite set S of sort symbols s containing the symbol Bool,

• an infinite set U of sort parameters u,

• an infinite set X of variables x,
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(Sorts) σ ::= s σ∗

(Parametric Sorts) τ ::= u | s τ∗

Figure 4.1: Abstract syntax for sort terms

• an infinite set F of function symbols f containing the symbols ≈, ∧, and ¬,

• an infinite set A of attribute names a,

• an infinite set V of attribute values v.

• the set W of ASCII character strings w.

• a two-element set B = {true, false} of Boolean values b,

• the set N of natural numbers n,

• an infinite set T N of theory names T ,

• an infinite set L of logic names L.

It is unnecessary to require that the sets above be pairwise disjoint.

4.1 The language of sorts

In many-sorted logics, terms are typed, or sorted, and each sort is denoted by a sort symbol.
In SMT-LIB logic, the language of sorts is extended from sort symbols to sort terms built
with symbols from the set S above. Formally, we have the following.

Definition 1 (Sorts). For all non-empty subsets S of S and all mappings ar : S → N, the
set Sort(S) of all sorts over S (with respect to ar) is defined inductively as follows:

1. every s ∈ S with ar(s) = 0 is a sort;

2. If σ1, . . . , σn are sorts, s ∈ S and ar(s) = n, then the term s σ1 · · · σn is a sort.

We say that s ∈ S has (or is of) arity n if ar(s) = n.

As an example of a sort, if Int and Real are sort symbols of arity 0, and List and Array
are sort symbols of respective arity 1 and 2, then the expression List (Array Int (List Real))
and all of its subexpressions are sorts.

Function symbol declarations in theory declarations (defined later), use also parametric
sorts. These are defined similarly to sorts above except that they can be built also over a
further set U of sort parameters, used like sort symbols of arity 0. Similarly to the example
above, if u1, u2 are elements of U , the expression List (Array u1 (List u2)) and all of its
subexpressions are parametric sorts.
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(Attributes) α ::= a | a = v

(Terms) d ::= x | f t∗ | fσ t∗
| ∃ (x:σ)+ t | ∀ (x:σ)+ t | let (x = t)+ in t
| t α+

Figure 4.2: Abstract syntax for unsorted terms

An abstract syntax for sorts σ and parametric sorts τ . which ignores arity constraints
for simplicity, is provided in Figure 4.1. Note that every sort is a parametric sort, but not
vice versa. Also note that parametric sorts are used only in theory declarations; they are not
part of SMT-LIB logic. In the following, we say “sort” to refer exclusively to non-parametric
sorts.

4.2 The language of terms

In the abstract syntax, terms are built out of variables from X , function symbols from F ,
and a set of binders. The logic considers, in fact, only well-sorted terms, a subset of all
possible terms determined by a sorted signature, as described below.

The set of all terms is defined by the abstract syntax rules of Figure 4.2. The rules
do not distinguish between constant and function symbols (they are all members of the
set F). These distinctions are really a matter of arity, which is taken care of later by the
well-sortedness rules.

For all n ≥ 0, variables x1, . . . , xn ∈ X and sorts σ1, . . . , σn,

• the prefix construct ∃x1:σ1 · · · xn:σn is a sorted existential binder (or existential
quantifier) for x1, . . . , xn;

• the prefix construct ∀x1:σ1 · · · xn:σn is a sorted universal binder (or universal
quantifier) for x1, . . . , xn;

• the mixfix construct letx1 = · · · xn = in is an (parallel-)let binder for x1, . . . , xn.

We speak of bound or free (occurrences of) variables in a term as usual. Terms are
closed if they contain no free variables, and open otherwise. Terms are ground if they are
variable-free.

For simplicity, the defined language does not contain any logical symbols other than
quantifiers. Logical connectives for negation, conjunction and so on and the equality symbol,
which we denote here by ≈, are just function symbols of the basic theory Core, implicitly
included in all SMT-LIB theories (see Subsection 3.7.1).

Terms can be optionally annotated with zero or more attributes. Attributes have no
logical meaning, but they are a convenient mechanism for adding meta-logical information,
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as illustrated in Section 3.6. Syntactically, an attribute is either an attribute name a ∈ A or
a pair the form a = v where a ∈ A and v is an attribute value in V.1

Function symbols themselves may be annotated with a sort, as in fσ. Sort annotations
simplify the sorting rules of the logic, which determine the set of well-sorted terms.

4.2.1 Signatures

Well-sorted terms in SMT-LIB logic are terms that can be associated with a unique sort by
means of a set of sorting rules similar to typing rules in programming languages. The rules
are based on the following definition of a (many-sorted) signature.

Definition 2 (SMT-LIB Signature). An SMT-LIB signature, or simply a signature, is a
tuple Σ consisting of:

• a set ΣS ⊆ S of sort symbols containing Bool,

• a set ΣF ⊆ F of function symbols containing ≈, ∧, and ¬,

• a total mapping ar from ΣS to N, with ar(Bool) = 0,

• a partial mapping from the variables X to Sort(Σ) := Sort(ΣS),2

• a left-total relation3 R from ΣF to Sort(Σ)+ such that

– (¬, Bool Bool), (∧, Bool Bool Bool) ∈ R, and

– (≈, σσBool) ∈ R for all σ ∈ Sort(Σ).

Each sort sequence associated by Σ to a function symbol f is a rank of f .

The rank of a function symbol specifies, in order, the expected sort of the symbol’s
arguments and result. It is possible for a function symbol to be overloaded in a signature
for being associated to more than one rank in that signature.

This form of ad-hoc polymorphism is entirely unrestricted: a function symbol can have
completely different ranks—even varying in arity. For example, in a signature with sorts Int
and Real (with the expected meaning), it is possible for the minus symbol − to have all
of the following ranks: Real Real (for unary negation over the reals), Int Int (for unary
negation over the integers), Real Real Real (for binary subtraction over the reals), and
Int Int Int (for binary subtraction over the integers).

Together with the mechanism used to declare theories (described in the next section),
overloading also provides an approximate form of parametric polymorphism by allowing one
to declare function symbols with ranks all having the same shape. For instance, it is possible

1 At this abstract level, the syntax of attribute values is intentionally left unspecified.
2 Note that Sort(Σ) is non-empty because at least one sort in ΣS, Bool, has arity 0. Also, recall that if

S is a set of sort symbols (like ΣS), then Sort(S) is the set of all sorts over S.
3 A binary relation R ⊆ X × Y is left-total if for each x ∈ X there is (at least) a y ∈ Y such that xRy.
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to declare an array access symbol with rank (Arrayσ1σ2)σ1σ2 for all sorts σ1, σ2 in a theory
signature. Strictly speaking, this is still ad-hoc polymorphism because SMT-LIB logic itself
does not allow parametric sorts.4 However, it provides most of the convenience of parametric
polymorphism while remaining within the confines of the standard semantics of many-sorted
FOL.

A function symbol can be ambiguous in an SMT-LIB signature for having distinct ranks of
the form σ̄σ1 and σ̄σ2. Thanks to the requirement in Definition 2 that variables have at most
one sort, in a signature with no ambiguous function symbols every term can have at most
one sort. In contrast, with an ambiguous symbol f whose different ranks are σ̄σ1, . . . , σ̄σn,
a term of the form f t̄, where the terms t̄ have sorts σ̄, can be given a unique sort only if f
is annotated with one of the result sorts σ1, . . . , σn, that is, only if it is written as fσi t̄ for
some i ∈ {i, . . . , n}.

In the following, we will work with ranked function symbols and sorted variables in a
signature. Formally, given a signature Σ, a ranked function symbol is a pair (f, σ1 · · ·σnσ) in
F×Sort(Σ)+, which we write as f :σ1 · · ·σnσ. A sorted variable is a pair (x, σ) in X×Sort(Σ),
which we write as x:σ. We write f :σ1 · · ·σnσ ∈ Σ and x:σ ∈ Σ to denote that f has rank
σ1 · · ·σnσ in Σ and x has sort σ in Σ.

A signature Σ′ is variant of a signature Σ if it is identical to Σ possibly except for
its mapping from variables to sorts. We will also consider signatures that conservatively
expand a given signature with additional sort and function symbols or additional ranks for
Σ’s function symbols. A signature Ω is a expansion of a signature Σ if all of the following
hold: ΣS ⊆ ΩS; ΣF ⊆ ΩF; the sort symbols of Σ have the same arity in Σ and in Ω; for all
x ∈ X and σ ∈ Sort(Σ), x:σ ∈ Σ iff x:σ ∈ Ω; for all f ∈ F and σ̄ ∈ Sort(Σ)+, if f :σ̄ ∈ Σ
then f :σ̄ ∈ Ω. In that case, Σ is a subsignature of Ω.

4.2.2 Well-sorted terms

Figure 4.3 provides a set of rules defining well-sorted terms with respect to an SMT-LIB
signature Σ. Strictly speaking then, and similarly to more conventional logics, the SMT-
LIB logic language is a family of languages parametrized by the signature Σ. As explained
later, for each script working in the context of a background theory T , the specific signature
is jointly defined by the declaration of T plus any additional sort and function symbol
declarations contained in the script.

The format and meaning of the sorting rules in Figure 4.3 is fairly standard and should
be largely self-explanatory to readers familiar with type systems. In more detail, the letter
σ (possibly primed or with subscripts) denotes sorts in Sort(Σ), the integer index k in the
rules is assumed ≥ 0. The expression Σ[x1 : σ1, . . . , xk+1 : σk+1] denotes the signature that
maps xi to sort σi for i = 1, . . . , k + 1, and coincides otherwise with Σ. The rules operate
over sorting judgments which are triples of the form Σ ` t : σ.

4 Parametric sort terms that occur in theory declarations are meta-level syntax as far as SMT-LIB logic
is concerned. They are schemas standing for concrete sorts.
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Σ ` x α∗ : σ
if x:σ ∈ Σ

Σ ` t1 : σ1 · · · Σ ` tk : σk

Σ ` (f t1 · · · tk) α∗ : σ
if

{
f :σ1 · · ·σkσ ∈ Σ and

f :σ1 · · ·σkσ′ /∈ Σ for all σ′ 6= σ

Σ ` t1 : σ1 · · · Σ ` tk : σk

Σ ` (fσ t1 · · · tk) α∗ : σ
if

{
f :σ1 · · ·σkσ ∈ Σ and

f :σ1 · · ·σkσ′ ∈ Σ for some σ′ 6= σ

Σ[x1:σ1, . . . , xk+1:σk+1] ` t : Bool

Σ ` (Qx1:σ1 · · · xk+1:σk+1 t) α
∗ : Bool

if Q ∈ {∃,∀}

Σ ` t1 : σ1 · · · Σ ` tk+1 : σk+1 Σ[x1:σ1, . . . , xk+1:σk+1] ` t : σ

Σ ` (let x1 = t1 · · · xk+1 = tk+1 in t) α∗ : σ

Figure 4.3: Well-sortedness rules for terms

Definition 3 (Well-sorted Terms). For every SMT-LIB signature Σ, a term t generated by
the grammar in Figure 4.2 is well-sorted (with respect to Σ) if Σ ` t : σ is derivable by the
sorting rules in Figure 4.3 for some sort σ ∈ Sort(Σ). In that case, we say that t has, or is
of, sort σ.

With this definition, it is possible to show that every term has at most one sort.(12)

Definition 4 (SMT-LIB formulas). For each signature Σ, the language of SMT-LIB logic
is the set of all well-sorted terms wrt Σ. Formulas are well-sorted terms of sort Bool.

In the following, we will sometimes use ϕ and ψ to denote formulas.

Constraint 3. SMT-LIB scripts consider only closed formulas, or sentences, closed terms
of sort Bool.(13)

There is no loss of generality in the restriction above because, as far as satisfiability is
concerned, every formula ϕ with free variables x1, . . . , xn of respective sort σ1, . . . , σn, can
be rewritten as

∃ x1:σ1 . . . xn:σn ϕ .

An alternative way to avoid free variables in scripts is to replace them by fresh constant
symbols of the same sort. This is again with no loss of generality because, for satisfiability
modulo theories purposes, a formula’s free variables can be treated equivalently as free
symbols (see later for a definition).
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4.3 Structures and Satisfiability

The semantics of SMT-LIB is essentially the same as that of conventional many-sorted logic,
relying on a similar notion of Σ-structure.

Definition 5 (Σ-structure). Let Σ be a signature. A Σ-structure A is a pair consisting
of a set A, the universe of A, that includes the two-element set B = {true, false}, and a
mapping that interprets

• each σ ∈ Sort(Σ) as subset σA of A, with BoolA = B,

• each (ranked function symbol) f :σ ∈ Σ as an element (f :σ)A of σA,

• each f :σ1 · · ·σnσ ∈ Σ with n > 0 as a total function (f :σ1 · · ·σnσ)A from σA1 ×· · ·×σAn
to σA, with ≈:σσBool interpreted as the identity predicate over σA5.

For each σ ∈ Sort(Σ), the set σA is called the extension of σ in A.(14)

Note that, as a consequence of overloading, a Σ-structure does not interpret plain function
symbols but ranked function symbols. Also note that any Σ-structure is also a Σ′-structure
for every variant Σ′ of Σ.

If B is an Ω-signature with universe B and Σ is a subsignature of Ω, the reduct of B to
Σ is the (unique) Σ-structure with universe B that interprets its sort and function symbols
exactly as B.

4.3.1 The meaning of terms

A valuation into a Σ-structure A is a partial mapping v from X × Sort(Σ) to the set of all
domain elements of A such that, for all x ∈ X and σ ∈ Sort(Σ), v(x:σ) ∈ σA. We denote
by v[x1:σ1 7→ a1, . . . , xn:σn 7→ an] the valuation that maps xi:σi to ai ∈ A for i = 1, . . . , n
and is otherwise identical to v.

If v is a valuation into Σ-structure A, the pair I = (A, v) is a Σ-interpretation. We write
I[x1:σ1 7→ a1, . . . , xn:σn 7→ an] as an abbreviation for the Σ′-interpretation

(A′, v[x1:σ1 7→ a1, . . . , xn:σn 7→ an])

where Σ′ = Σ[x1:σ1, . . . , xn:σn] and A′ is just A but seen as a Σ′-structure.
A Σ-interpretation I assigns a meaning to well-sorted Σ-terms by means of a uniquely

determined (total) mapping [[ ]]I of such terms into the universe of its structure.

Definition 6. Let Σ be an SMT-LIB signature and let I = (A, v) be a Σ-interpretation.
For every well-sorted term t of sort σ with respect to Σ, [[t]]I is defined inductively as follows.

1. [[x]]I = v(x:σ)

5 That is, for all σ ∈ Sort(Σ) and all a, b ∈ σA, ≈A(a, b) = true iff a = b.
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2. [[f̂ t1 . . . tn]]I = (f :σ1 · · ·σnσ)A(a1, . . . , an) if


f̂ = f or f̂ = fσ,

Ω is the signature of I,
for i = 1, . . . , n

Ω ` ti : σi and ai = [[ti]]
I

3. [[let x1 = t1 · · · xn = tn in t]]I = [[t]]I
′

if


Ω is the signature of I,
for i = 1, . . . , n

Ω ` ti : σi and ai = [[ti]]
I ,

I ′ = I[x1:σ1 7→ a1, . . . , xn:σ1 7→ an]

4. [[∃x1:σ1 · · · xn:σn t]]
I = true

iff [[t]]I
′

= true for some

{
(a1, . . . , an) ∈ σA1 × · · · × σAn ,
I ′ = I[x1:σ1 7→ a1, . . . , xn:σ1 7→ an]

5. [[∀x1:σ1 · · · xn:σn t]]
I = true

iff [[t]]I
′

= true for all

{
(a1, . . . , an) ∈ σA1 × · · · × σAn ,
I ′ = I[x1:σ1 7→ a1, . . . , xn:σ1 7→ an]

6. [[u α1 · · · αn]]I = [[u]]I .

One can show that [[ ]]I is well-defined and indeed total over terms that are well-sorted with
respect to I’s signature.

A Σ-interpretation I satisfies a Σ-formula ϕ if [[ϕ]]I = true, and falsifies it otherwise.
The formula ϕ is satisfiable if there is a Σ-interpretation I that satisfies it, and is unsatisfiable
otherwise.

For a closed term t, its meaning [[t]]I in an interpretation I = (A, v) is independent of the
choice of the valuation v—because the term has no free variables. For such terms then, we
can write [[t]]A instead of [[t]]I . Similarly, for sentences, we can speak directly of a structure
satisfying or falsifying the sentence. A Σ-structure that satisfies a sentence is also called a
model of the sentence.

The notion of isomorphism introduced below is needed for Definition 9, Theory Combi-
nation, in the next section.

Definition 7 (Isomorphism). Let be A and B two Σ-structures with respective universes
A and B. A mapping h : A→ B is an homomorphism from A to B if

1. for all σ ∈ Sort(Σ) and a ∈ σA,
h(a) ∈ σB ;

2. for all f :σ1 . . . σnσ ∈ Σ with n > 0 and (a1, . . . , an) ∈ σA1 × · · · × σAn ,

h((f :σ1 . . . σnσ)A(a1, . . . , an)) = (f :σ1 . . . σnσ)B(h(a1), . . . , h(an)) .
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A homomorphism between A and B is an isomorphism of A onto B if it is invertible and
its inverse is a homomorphism from B to A.

Two Σ-structures A and B are isomorphic if there is an isomorphism from one onto
the other. Isomorphic structures are interchangeable for satisfiability purposes because one
satisfies a Σ-sentence if and only the other one does.

4.4 Theories

Theories are traditionally defined as sets of sentences. Alternatively, and more generally, in
SMT-LIB a theory is defined as a class of structures with the same signature.

Definition 8 (Theory). For any signature Σ, a Σ-theory is a class of Σ-structures. Each of
these structures is a model of the theory.

Typical SMT-LIB theories consist of a single model (e.g., the integers) or of the class
of all structures that satisfy some set of sentences—the axioms of the theory. Note that in
SMT-LIB there is no requirement that the axiom set be finite or even recursive.

SMT-LIB uses both basic theories, obtained as instances of a theory declaration schema,
and combined theories, obtained by combining together suitable instances of different theory
schemas. The combination mechanism is defined below.

Two signatures Σ1 and Σ2 are compatible if they have exactly the same sorts symbols
and agree both on the arity they assign to sort symbols and on the sorts they assign to
variables.6 Two theories are compatible if the have compatible signatures. The combination
Σ1 + Σ2 of two compatible signatures Σ1 and Σ2 is the smallest compatible signature that
is an expansion of both Σ1 and Σ2, i.e., the unique signature Σ compatible with Σ1 and Σ2

such that, for all f ∈ F and σ̄ ∈ Sort(Σ)+, f :σ̄ ∈ Σ iff f :σ̄ ∈ Σ1 or f :σ̄ ∈ Σ2.

Definition 9 (Theory Combination). Let T1 and T2 be two theories with compatible sig-
natures Σ1 and Σ2, respectively. The combination T1 + T2 of T1 and T2 consists of all
(Σ1 + Σ2)-structures whose reduct to Σi is isomorphic to a model of Ti, for i = 1, 2.

Over pairwise compatible signatures the signature combination operation + is associa-
tive and commutative. The same is also true for the theory combination operation + over
compatible theories. This induces, for every n > 1, a unique n-ary combination T1 + · · ·+Tn
of mutually compatible theories T1, . . . , Tn in terms of nested binary combinations. Com-
bined theories in SMT-LIB are exclusively theories of the form T1 + · · ·+ Tn for some basic
SMT-LIB theories T1, . . . , Tn.

SMT is about checking the satisfiability or the entailment of formulas modulo some
(possibly combined) theory T . This standard adopts the following precise formulation of
such notions.

6 Observe that compatibility is an equivalence relation on signatures.
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(Sort symbol declarations) sdec ::= s n α∗

(Fun. symbol declarations) fdec ::= f σ+ α∗

(Param. fun. symbol declarations) pdec ::= fdec | Πu+ (f τ+ α∗)

(Theory attributes) tattr ::= sorts = sdec+ | funs = pdec+

| sorts-description = w
| funs-description = w
| definition = w | axioms = t+

| notes = w | α

(Theory declarations) tdec ::= theory T tattr+

Figure 4.4: Abstract syntax for theory declarations

Definition 10 (Satisfiability and Entailment Modulo a Theory). For any Σ-theory T , a
Σ-sentence is satisfiable in T iff it is satisfied by one of T ’s models. A set Γ of Σ-sentences
T -entails a Σ-sentence ϕ, written Γ |=T ϕ, iff every model of T that satisfies all sentences
in Γ satisfies ϕ as well.

4.4.1 Theory Declarations

In SMT-LIB, basic theories are obtained as instances of theory declarations. (In contrast,
combined theories are defined in logic declarations.) An abstract syntax of theory decla-
rations is defined in Figure 4.4. The symbol Π in parametric function symbol declarations
is a (universal) binder for the sort parameters—and corresponds to the symbol par in the
concrete syntax.

To simplify the meta-notation let T denote a theory declaration with theory name T .
Given such a theory declaration, assume first that T has no sorts-description and funs-
description attributes, and let S and F be respectively the set of all sort symbols and all
function symbols occurring in T . Let Ω be a signature whose sort symbols include all the
symbols in S, with the same cardinality.

The definition provided in the definition attribute of T must be such that every signature
like Ω above uniquely determines a theory T [Ω] as an instance of T with signature Ω̂ defined
as follows:

1. Ω̂S = ΩS,

2. Ω̂F = F ∪ ΩF,

3. no variables are sorted in Ω̂,(15)

4. for all f ∈ Ω̂F and σ̄ ∈ (Ω̂S)+, f :σ̄ ∈ Ω̂ iff

(a) f :σ̄ ∈ Ω, or
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(Logic attributes) lattr ::= theories = T+ | language = w
| extensions = w | values = w
| notes = w | α

(Logic declarations) ldec ::= logic L lattr+

Figure 4.5: Abstract syntax for logic declarations

(b) T contains a declaration of the form f σ̄ ᾱ, or

(c) T contains a declaration of the form Π ū (f τ̄ ᾱ) and σ̄ is an instance of τ̄ .

We say that a ranked function symbol f :σ̄ of Ω̂ is declared in T if f :σ̄ ∈ Ω̂ because of
Point 4b or 4c above. We call the sort symbols of Ω̂ that are not in S the free sort symbols
of T [Ω]. Similarly, we call the ranked function symbols of Ω̂ that are not declared in T
the free function symbols of T [Ω].7 This terminology is justified by the following additional
requirement on T .

The definition of T should be parametric, in this sense: it must not constrain the free
symbols of any instance T [Ω] of T in any way. Technically, T must be defined so that the
set of models of T [Ω] is closed under any changes in the interpretation of the free symbols.
That is, every structure obtained from a model of T [Ω] by changing only the interpretation
of T [Ω]’s free symbols should be a model of T [Ω] as well.(16)

The case of theory declarations with sorts-description and funs-description attributes
is similar.

4.5 Logics

A logic in SMT-LIB is any sublogic of the main SMT-LIB logic obtained by

• fixing a signature Σ and a Σ-theory T ,

• restricting the set of structures to the models of T , and

• restricting the set of sentences to some subset of the set of all Σ-sentences.

A model of a logic with theory T is any model of T ; a sentence is satisfiable in the logic
iff it satisfiable in T .

4.5.1 Logic Declarations

Logics are specified by means of logic declarations. Contrary to the theory declarations, a
logic declaration specifies a single logic, not a class of them, so we call the logic L too. An
abstract syntax of theory declarations is defined in Figure 4.5.

Let L be a logic declaration whose theories attribute has value T1, . . . , Tn.

7 Note that because of overloading we talk about ranked function symbols being free or not, not just
function symbols.
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Theory. The logic’s theory is the theory T uniquely determined as follows. For each
i = 1, . . . , n, let Si be the set of all sort symbols occurring in Ti. The text in the language
attribute of L may specify an additional set of S0 sort symbols and an additional set of
ranked function symbols with ranks over Sort(S)+ where S =

⋃
i=0,...,n Si. Let Ω be the

smallest signature with ΩS = S containing all those ranked function symbols. Then for each
i = 1, . . . , n, let Ti[Ω] be the instance of Ti determined by Ω as described in Subsection 4.4.1.
The theory of L is

T = T1[Ω] + · · ·+ Tn[Ω] .

Note that T is well defined. To start, Ω is well defined because any sort symbols shared by
two declarations among T1, . . . , Tn have the same arity in them. The theories T1[Ω], . . . , Tn[Ω]
are well defined because Ω satisfies the requirements in Subsection 4.4.1. Finally, the signa-
tures of T1[Ω], . . . , Tn[Ω] are pairwise compatible because they all have the same sort symbols,
each with the same arity in all of them.

Values. The values attribute is expected to designate for each sort σ of T a distinguished
set Vσ of ground terms called values. The definition of Vσ should be such that every sentence
satisfiable in the logic L is satisfiable in a model A of T where each element of σA is denoted
by some element of Vσ. In other words, if Σ is T ’s signature, A should be such that, for all
σ ∈ ΣS and all a ∈ σA, [[t]]A = a for some t ∈ Vσ. For example, in a logic of the integers, the
set of values for the integer sort might consist of all the terms of the form 0 or [−]n where
n is a non-zero numeral.

For flexibility, we do not require that Vσ be minimal. That is, it is possible for two terms
of Vσ to denote the same element of σA. For example, in a logic of rational numbers, the
set of values for the rational sort might consist of all the terms of the form [−]m/n where m
is a numeral and n is a non-zero numeral. This set covers all the rationals but, in contrast
with the previous example, is not minimal.

Note that the requirements on Vσ can be always trivially satisfied by L by making sure
that the signature Ω above contains a distinguished set of infinitely many additional constant
symbols of sort σ, and defining Vσ to be that set. We call these constant symbols abstract
values. Abstract values are useful to denote the elements of uninterpreted sorts or sorts
standing for structured data types such as lists, arrays, sets and so on.8

8 The concrete syntax reserves a special format for constant symbols used as abstract values: they are
members of the 〈symbol〉 category that start with the character @.



Chapter 5

SMT-LIB Scripts

To enable finer-grained interaction of SMT solvers with other tools, such as verification
tools, which wish to call them, this chapter defines a Command Language for commands
to and responses from SMT solvers. The calling tool issues commands in the format of the
Command Language to the SMT solver via the solver’s standard textual input channel. The
SMT solver then responds over two textual output channels, one for regular output and one
for diagnostic output. Note that the primary goal is to support convenient interaction with
a calling program, not human interaction. This has some influence on the design.

There are many other commands one might wish for an SMT solver to support, beyond
those adopted here. A handful of additional commands are planned for the next point
release of the standard, such as a command to obtain information about the assignment
of truth values to subformulas when the solver reports a formula is satisfiable. In general,
it is expected that time and more experience with the needs of applications will drive the
addition of further commands, in subsequent versions.

This chapter specifies the formats for commands (and their responses) to do the following
things:

• managing a stack of assertion sets,

• defining sorts and functions in the current assertion set,

• adding assumptions to the current assertion set,

• checking satisfiability the conjunction of all assertions in the assertion-set stack,

• obtaining further information following a satisfiability check (e.g., model information),

• setting values for standard and solver-specific options,

• getting standard and solver-specific information from the solver.

This chapter, like all those in Part III of this document, gives the semantics for commands
expressed in an abstract syntax. Here, we reference syntactic categories defined in previous
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(Commands) c ::= set-logic L
| set-option o
| set-info α
| declare-sort s n
| define-sort s u∗ τ
| declare-fun f σ∗ σ
| define-fun f (x:σ)∗ σ t
| push n
| pop n
| assert t
| check-sat
| get-assertions
| get-value t+

| get-model
| get-proof
| get-unsat-core
| get-info i
| get-option a
| exit

(Scripts) scr ::= c∗

Figure 5.1: Abstract syntax for commands

chapters, in particular from Chapter 4 (e.g., terms t and sorts σ). In addition to sets of
abstract symbols and values fixed in Chapter 4, we add here

• the set R of non-negative rational numbers r.

The concrete syntax is discussed in Chapter 3 and summarized in Appendix B. The mapping
from concrete to abstract syntax is defined in Appendix D.

5.1 Commands

Commands have the abstract syntax given by the grammar of Figure 5.1. A script is just a se-
quence of commands. The commands push, pop, declare-sort, define-sort, declare-fun,
define-fun, assert, and check-sat are called assertion-set commands, because they operate
on the assertion-set stack (explained further below).

The informal semantics of scripts for an SMT solver is given in the following sections.
After a few preliminary considerations, we describe how solvers conforming to this specifica-
tion should respond to the commands related to the assertion-set stack, definitions, asserting
and checking satisfiability, getting evidence, setting options, and reporting additional infor-
mation.
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5.1.1 Starting and terminating

Setting the logic. The command

set-logic

tells the solver what logic (in the sense of Section 4.5) is being used. For simplicity, it is an
error for more than one set-logic command to be issued to a single running instance of the
solver, and it is an error for the logic name given not to correspond to an SMT-LIB logic.
The logic must be set before define-sort, define-fun, assert, or check-sat are used.

Setting solver options. The command

set-option o

sets a solver’s option to a specific value, as specified by the argument o. More details on
predefined options and expected behavior are provided in Section 5.3.

Terminating. The command

exit

instructs the solver to exit.

5.1.2 Modifying the assertion-set stack

As mentioned above, the solver maintains a stack of sets, containing some locally scoped
information: asserted formulas, declarations, and definitions. Some terminology related to
this data structure is needed:

• assertion-set stack: the single global stack of sets.

• assertion sets: the sets which are the elements on the stack.

• set of all assertions: the union of all the assertion sets currently on the assertion-set
stack.

• current assertion set: the assertion set (if any) currently on the top of the stack.

Initial assertion-set stack. The initial state of the assertion-set stack for conforming
solvers is with a single empty assertion set on the top of the stack.

Growing the stack. The command

push n

pushes n empty assertion sets onto this stack (typically, n will be 1).
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Shrinking the stack. The command

pop n

pops the top n assertion sets from the stack. If n is greater than the current stack depth,
an error results. If n is 0, no assertion sets are popped.

5.1.3 Declaring and defining new symbols

Four commands allow the declaration or definition of a function symbol or sort symbol.
These declarations and definitions are local, in the sense that popping assertion sets removes
them.(17) So well-sortedness checks, required for commands that use sorts or terms, are
always done with respect to the current signature, determined by the logic specified by
the set-logic command and by the set of sort symbols and rank associations (for function
symbols) in the set of all assertions.

It is an error to declare or define a function or sort symbol that is already in the current
signature. This implies in particular that, contrary to theory function symbols, user-defined
functions symbols cannot be overloaded.(18)

Declaring a sort symbol. The command

declare-sort s n

adds the association of arity n with sort symbol s to the top assertion set.

Defining a sort symbol. The command

define-sort s u1 · · · un τ

adds the association of arity n with sort symbol s to the current assertion set. Also, subse-
quent well-sortedness checks must treat s σ1 · · ·σn as an abbreviation for the sort obtained
by simultaneously substituting σi for ui, for i ∈ {1, . . . , n}, in τ .(19)

The command reports an error if the argument τ is not a well defined parametric sort
with respect to the current signature. Note that this restriction prohibits (meaningless)
circular definitions where τ contains s.

Declaring a function symbol. The command

declare-fun f σ1 · · ·σn σ

adds the association f : σ1 · · ·σnσ to the current assertion set.

Defining a function symbol. The command

define-fun f (x1:σ1) · · · (xn:σn) σ t
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adds the association f : σ1 · · ·σnσ to the current assertion set. In addition, the logical
semantics is as if the formula ∀ (x1:σ1 · · · xn:σn) (f x1 · · ·xn) ≈ t had been also added to
the assertion set.

The command reports an error if the argument t is not a well-sorted term of sort σ with
respect to the current signature extended with the associations x1 : σ1, . . . , xn : σn. Note
that this restriction prohibits recursive (or mutually recursive) definitions.

In-line definitions. Any closed subterm t occurring in the argument(s) of a command
c can be optionally annotated with a named attribute, that is, can appear as (t named
f) where f is a fresh function symbol. For such a command c, let (t1 named f1), . . . , (tn
named fn) be the preorder enumeration of all the named subterms of c. The effect of those
annotations is the same, and has the same requirements, as the sequence of commands

define-fun f1 () σ1 t
′
1

...
define-fun fn () σk t

′
n

c′

where, for each i = 1, . . . , n, σi is the sort of ti with respect to the current signature up to
the declaration of fi, t

′
i is the term obtained from ti by removing all its named annotations,

and c′ is similarly obtained from c by removing all its named annotations.
By this semantics, each label fi can occur, as a constant symbol, in any subexpression of

c that comes after (ti named fi) in the inorder traversal of c, as well as after the command c
itself. The labels f1, . . . , fn can be used like any other user-defined nullary function symbol,
with the same visibility and scoping restrictions they would have if they had been defined
with the sequence of commands above. However, contrary from function symbols introduced
by define-fun, labels have an additional, dedicated use in the commands get-assignment
and get-unsat-core.

5.1.4 Asserting formulas and checking satisfiability

Asserting formulas. The command

assert t

adds term t to the assertion set on the top of the assertion-set stack, provided t is a closed
formula (i.e., a well sorted closed term of sort Bool). Otherwise, it returns an error.

Instances of this command of the form assert (t named f), where the asserted formula
t is given a label f , have the additional effect of adding t to the formulas tracked by the
commands get-assignment and get-unsat-core, as explained later.

Inspecting asserted formulas. The command

get-assertions
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causes the solver to print the set of all assertions. The command is intended for interactive
use. Indeed, it is an error to use this command when the solver is not in interactive mode.
This mode may be set with set-option and the interactive-mode option; see Section 5.3
below. Supporting interactive mode is optional for solvers, and solvers electing not to support
it may respond with unsupported to get-assertions. Note that conforming solvers are
not allowed to print formulas equivalent to or derived from the asserted formulas; they must
print exactly the set of all assertions.(20)

Checking satisfiability. The command

check-sat

instructs the solver to check whether or not the conjunction of the set of all assertions is
satisfiable in the logic specified with the set-logic command. Conceptually, it asks the solver
to search for a model of the logic that satisfies all the currently asserted formulas. When it
has finished attempting to do this, the solver should reply on its regular output channel (see
Section 5.2) with a csr response:

(check-sat response) csr ::= sat | unsat | unknown

where sat indicates that the solver has found a model, unsat that the solver has estab-
lished there is no model, and unknown that the search was inconclusive—because of time
limits, solver incompleteness, and so on. If the solver reports sat or, optionally, if it re-
ports unknown, it should respond to the get-value, get-model and get-assignment
commands. If it reports unsat, it must respond to the get-proof and get-unsat-core
commands.

A check-sat command may be followed by other assert and check-sat commands,
without an intervening pop. In that case, the semantics is that subsequent assert commands
are just extending the current assertion set (as it existed at the time of the check-sat
command), and check-sat commands are checking satisfiability of the resulting set of all
assertions. So subsequent check-sat commands are never handled with respect to the model
possibly found by an earlier check-sat command.(21)

5.1.5 Inspecting proofs and models

Requesting proofs. The command

get-proof

asks the solver for a proof of unsatisfiability for the set of all assertions. It can be issued only
following a check-sat command which reports unsatisfiability, without intervening assertion-
set commands. Also, in recognition that producing proofs can be computationally expensive,
the command can only be issued if the produce-proofs option, false by default, is set to
true (see Section 5.3 below). The solver should respond to this command by printing a
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refutation proof (on its regular output channel). As mentioned earlier, there is, as yet, no
standard SMT-LIB proof format, so this proof will necessarily be in a solver-specific format.
Solvers that do not support proof production should output unsupported (see Section 5.2
for more details on solver responses).

Requesting unsatisfiable cores. The command

get-unsat-core

asks the solver for an unsat core, a subset of the set of all assertions that the solver has
determined to be unsatisfiable. Similarly to get-proof, it can be issued only following a
check-sat command which reports unsatisfiability, without intervening assertion-set com-
mands. Also, the produce-unsat-cores option, which is false by default, must be set to
true (see Section 5.3 below). The solver selects from the unsat core only those formulas
that have been asserted with a command of the form assert (t named f), and returns their
labels f . Unlabeled formulas in the unsat core are simply not reported.(22)

The semantics of this command’s output is that the reported assertions together with all
the unlabeled ones in the set of all assertions are jointly unsatisfiable. In practice then, not
labeling assertions is useful for unsat core detection purposes only when the user is sure that
the set of all unlabeled assertions is satisfiable.

Evaluating terms. The command

get-value t1 · · · tn

where n > 1 and each ti is a well sorted closed quantifier-free term, can be issued only follow-
ing a check-sat command that reports sat or, optionally, also one that reports unknown,
without intervening assertion-set commands. Similarly to get-proof and get-unsat-core,
it can be issued only if produce-models option, which is false by default, is set to true
(see Section 5.3 below). The command reports an error if any of the requirements above are
falsified. Otherwise, it returns for each ti a value vi

1 that is equivalent to ti in some model
A (of the given logic) identified by the solver. Specifically, vi has the same sort as ti and
[[ti]]

A = [[vi]]
A. The values are returned in a sequence of pairs of the form (ti vi), for each

i = 1, . . . , n. The model A is guaranteed to be a model of the set of all assertions only if the
last check-sat reported sat.(23)

Note that the solver does not need to describe the model A to the outside world in any
way other than by providing values in the model for the given ground terms. In fact, the
internal representation of the model may well be partial, and may be extended as needed in
response to successive get-value calls. In this respect, there is no requirement that different
permutations of the same set of get-value calls produce the same value for the input terms.

1 Recall that values are particular ground terms defined in a logic for each sort (see Subsection 4.5.1).
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The only requirement is that any two syntactically different values of the same sort returned
by the solver should have different meaning in the model.2

Requesting truth assignments. The command

get-assignment

is a light-weight and restricted version of get-value that asks for a truth assignment for a
selected set of previously entered formulas.(24) Similarly to several other commands already
discussed (e.g., get-proof), this command can be issued only if the produce-assignments
option, which is false by default, is set to true (see Section 5.3 below). Like get-value,
it can be issued only following a check-sat command that reports sat or, optionally, also
one that reports unknown, without intervening assertion-set commands. The command
returns a sequence of all pairs (f b) where b is either true or false and f is the label of a
(sub)term of the form (t named f) in the set of all assertions, with t of sort Bool. Similarly
to get-value, when the response of the most recent check-sat command was sat, and only
then, the set of all assertions is guaranteed to have a model (in the logic) that agrees with
the returned truth assignment.3

5.2 Solver Responses, Errors, and Other Output

Regular output, including responses and errors, which is produced by conforming solvers
should be written to the regular output channel. Diagnostic output, including warnings,
debugging, tracing, or progress information, should be written to the diagnostic output
channel. These channels may be set with set-option (see Section 5.3 below). By default
they are the standard output and standard error channels, respectively.

When a solver completes its processing in response to a command, by default it should
print to its standard output channel a general response:

(General response) gr ::= unsupported | success | error w

This default format applies to commands discussed below, unless otherwise noted. The
string given to error may be empty (but in that case should still be present as "") or else
an otherwise unspecified message describing the problem encountered. Tools communicating
with an SMT solver thus can always determine when the solver has completed its processing
in response to a command. Several options described in Section 5.3 below affect the printing
of responses, in particular by suppressing the printing of success, and by redirecting the
standard output.

2 So, for instance, in a logic of rational numbers, the solver cannot use both the terms 1/3 and 2/6 as
output values for get-value.

3 That is, for each (f b) in the assignment, the model satisfies f (or, equivalently, the formula t named by
f) iff b is true.
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Errors and solver state. This standard gives solvers two options when encountering
errors. They may either print an error message in the above format and then immediately exit
with a non-zero exit status; or else leave the state of the solver unmodified (by the command
which encountered an error), and continue accepting commands. For the second option, the
solver’s state should remain unmodified by the error-generating command, except possibly
for timing and diagnostic information). In particular, the assertion-set stack, discussed in
Section 5.1.2, is not modified.(25)

The standard error-behavior keyword can be used with the get-info command to check
which error behavior the tool supports (see Section 5.4 below).

Printing terms. Several commands below request the solver to print sets of terms. While
some commands, naturally, place semantic requirements on these sets, we impose here the
requirement that the term always must be well-sorted with respect to the current signature.

Printing defined symbols. All output from a compliant solver should print defined sym-
bols (both sort and function symbols) just as they are, without replacing them by the ex-
pression they are defined to equal. This approach generally keeps output from solvers much
more compact than with definitions expanded. An option is included below (Section 5.3),
however, to expand all definitions in solver output.

5.3 Solver Options

Solvers options may be set using the set-option command, and their current values obtained
using get-option. If an option is not supported, in either case the solver should print
unsupported on its regular output channel. For get-option, it otherwise just prints the
current value of the option on its regular output channel. Solver-specific option names are
allowed and indeed expected. A set of standard names is catalogued below and in the next
section. This Command Language specification requires solvers to recognize and reply in a
standard way to a few of these names. The majority, however, solvers need not support,
although in that case they should reply unsupported. These sets of names are likely to be
expanded or otherwise revised as further desirable common options and kinds of information
across tools are identified. For set-option commands, the following format is required for
replies, for both solver-specific and standard options:
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(Options) o ::= print-success = b
| expand-definitions = b
| interactive-mode = b
| produce-proofs = b
| produce-unsat-cores = b
| produce-models = b
| produce-assignments = b
| regular-output-channel = w
| diagnostic-output-channel = w
| random-seed = n
| verbosity = n
| α

The current list of standard option names is given next, together with default values and
whether or not the option must be supported by conforming solvers.

print-success, default true, required. Setting this to false causes the solver to suppress
the printing of success in all responses to commands. Other output remains unchanged.

random-seed, default value 0, optional. The argument is a numeral for the solver to use
as a random seed, in case the solver uses (pseudo-)randomization. The default value of 0
means that the solver can use any random seed—possibly a different one for each run of the
script.

expand-definitions, default false, optional. If the solver supports this option, setting it
to true causes all subsequent output from the solver to be printed with all definitions fully
expanded. That is, subsequent output should contain no defined symbols at all, only the
(full expansions of the) expressions they are defined to equal.

interactive-mode, default false, optional. If the solver supports this option, setting it to
true should enable the commands get-assertions and get-value (described in Section 5.1.4
and 5.1.5 above), which otherwise may not be called.

produce-proofs, default false, optional. If supported, this enables the command get-proof
(see Section 5.1.5 above), which otherwise may not be called.

produce-unsat-cores, default false, optional. If supported, this enables the command
get-unsat-core (see Section 5.1.5 above), which otherwise may not be called.

produce-models, default false, optional. If supported, this enables the command get-value
(see Section 5.1.5 above), which otherwise may not be called.
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(get-info response) gir ::= i+

(Info response) i ::= error-behavior = eb
| name = w
| authors = w+

| version = w
| status = csr
| reason-unknown = ru
| notes = w
| α

(Error behavior) eb ::= immediate-exit | continue-execution

(Reason unknown) ru ::= memout | incomplete

Figure 5.2: Abstract syntax for info responses

produce-assignments, default false, optional. If supported, this enables the command
get-assignments (see Section 5.1.5 above), which otherwise may not be called.

verbosity, default 0, optional. The argument is a non-negative numeral controlling the level
of diagnostic output written by the solver. All such output should be written to a secondary
output channel, called the diagnostic output channel, to avoid confusion with the responses
to commands which are written to standard output. These channels can be changed via the
regular-output-channel and diagnostic-output-channel options below. An argument
of 0 requests that no such output be produced. Higher values request more verbose output.

regular-output-channel, default "stdout", required. The argument should be a filename
to use subsequently for the output channel. The filename "stdout" is interpreted specially
to mean the solver’s standard output channel, and similarly, "stderr" means the solver’s
standard error channel.

diagnostic-output-channel, default "stderr", required. The argument should be a file-
name to use subsequently for the diagnostic output channel.

5.4 Getting Additional Information With get-info

The format for responses gir to get-info commands, for both solver-specific and standard
information names, is given in Figure 5.2. The different information names and more specific
formats of the info responses are given next. First we discuss statistics, then some additional
pieces of information.
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5.4.1 Statistics and get-info

The all-statistics name may be given to get-info to get various solver statistics. Supporting
it is optional. Solvers reply with a sequence of info responses i, giving statistics on the most
recent check-sat command. (Note that in the concrete syntax, this sequence is delimited
by parentheses.) It is required that this check-sat command is one without any intervening
assertion-set commands. A solver replies to all-statistics by giving a list of solver-specific
statistics, in the format of Figure 5.2. This standard does not currently define standard
statistics, as some of these (e.g. restarts, for restarts of a propositional reasoning engine)
are difficult to define precisely, while the exact semantics of others, including time and
memory, is still being discussed (for example, whether the latter two examples refer to
total script time or time for the last command).

5.4.2 Additional Standard Names for get-info

Some further standard names for get-info are given here. A few of these may be set by the
set-info command. If not indicated, they may not be set with set-info, and attempting to
do so results in an error. Support for setting values for solver-specific names with set-info
is optional.

error-behavior, required. If the response is immediate-exit, the solver is stating that it
will exit immediately when an error is encountered. If the response is continued-execution,
the solver is stating it will leave the state unmodified by the erroneous command, and
continue accepting and executing new commands. See Section 5.2 above for more on the
motivation for these two error behaviors.

name, required. This, like many other kinds of information, is what we shall call a singleton:
solvers reply with just one key-value pair, where the key is again the name of the piece of
information. Here, value is the name of the solver.

version, required. A singleton, where the value is the version number of the solver (e.g.,
1.2).

authors, required. A singleton, where the value is the list of names of the tool’s authors.

status, required, may be set with set-info. The status of the most recent check-sat
command or the value most recently set for status with set-info, whichever is more current.

reason-unknown, optional. If the status of the most recent check-sat command is unknown,
this gives a short reason why the solver could not successfully check satisfiability, from the
following options: memout, for out of memory; or incomplete, if the solver knows it is
incomplete for the class of formulas containing the most recent query.
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5.4.3 A Note on Benchmarks

The previous SMT-LIB Formula Language (version 1.2) includes a format for benchmarks.
The SMT-LIB initiative has collected a large number of benchmarks in this format, for
a variety of different logics. These benchmarks are used in the SMT research commu-
nity for standardized comparison of solvers, as well as for the SMT Competition (SMT-
COMP) [BdMS07].

This document does not include a separate syntactic category for benchmarks, for two
main reasons. First, there are many more kinds of behaviors allowed by this Command
Language than by version 1.2 benchmarks. It is reasonable to expect that researchers will
be interested in comparing solver performance across this wider set of possible behaviors.
Second, benchmarks as they are defined in version 1.2 are subsumed by scripts, as we now
explain.

Version 1.2 benchmarks can be viewed as scripts falling into a particular restricted class,
making use of the set-info command to include some declarative information. The restric-
tions, summarized from Sections 5 and 7 of the version 1.2 specification, are as follows:

• The (single) set-logic command setting the benchmark’s logic is the first command.

• There is exactly one check-sat command.

• There is at most one set-info command for status.

• The formulas in the script belong to the benchmark’s logic, with any free symbols
declared in the script.

• Extra symbols are declared exactly once before any use, and are part of the allowed
signature expansion for the logic.

• The only other allowed commands are assert, declare-sort, declare-fun, and check-sat.
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Appendix A

Notes

1 Preferring ease of parsing over human readability is reasonable in this context not only because SMT-LIB
benchmarks are meant to be read by solvers but also because they are produced in the first place by
automated tools like verification condition generators or translators from other formats.

2 This is the only varyadic function symbol in Version 2.0. It has been retained from Version 1.2 mostly
for backward compatibility and for its ability to express “all different” constraints compactly.

3 The rationale for allowing user-defined attributes is the same as in other attribute-value-based languages
(such as, e.g., BibTeX). It makes the SMT-LIB format more flexible and customizable. The understanding
is that user-defined attributes are allowed but need not be supported by an SMT solver for the solver
to be considered SMT-LIB compliant. We expect, however, that with continued use of the SMT-LIB
format, certain user-defined attributes will become widely used. Those attributes might then be officially
adopted into the format (as non-user-defined attributes) in later versions.

4 See the point made in Note 5.

5 Ideally, it would be better if :definition were a formal attribute, to avoid ambiguities and misin-
terpretation and possibly allow automatic processing. The choice of using free text for this attribute is
motivated by practicality reasons. The enormous amount of effort needed to first devise a formal language
for this attribute and then specify its value for each theory in the library is not justified by the current
goals of SMT-LIB. Furthermore, this attribute is meant mainly for human readers, not programs, hence
a natural language, but mathematically rigorous definition, seems enough.

6 Version 1.2 allowed one to specify a finitely-axiomatizable theory formally by listing a set of axioms an
:axioms attribute. This attribute is gone in Version 2.0, because only one or two theories in the new
SMT-LIB catalog can be defined that way. The remaining ones require infinitely many axioms or axioms
with quantified sort symbols which are not expressible in the language.

7 The theory declaration Empty in Version 1.2 of SMT-LIB is superseded by the Core theory declaration
schema.

8 One advantage of defining instances of theory declaration schemas this way is that with one instantiation
of the schema one gets a single theory with arbitrarily nested sorts—another example being the theory
of all nested lists of integers, say, with sorts (List Int), (List (List Int)). This is convenient in
applications coming from software verification, where verification conditions can contain arbitrarily nested
data types. But it is also crucial in providing a simple and powerful mechanism for theory combination,
as explained later.

9 The reason for informal attributes is similar to that for theory declarations.

10 The attribute is text-valued because it is mostly for documentation purposes for the benefit of benchmark
users. A natural language description of the logic’s language seems therefore adequate for this purpose.
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Of course, it is also possible to specify the language at least partially in some formal fashion in this
attribute, for instance by using BNF rules.

11 This is useful because in common practice the syntax of a logic is often extended for convenience with
syntactic sugar.

12 It would have been reasonable to adopt an alternative version of the rule for well-sortedness of terms
(fσ t1 · · · tk) α∗ with annotated function symbols fσ, without the second conjunct of the rule’s side
condition. This would allow formation of terms with annotated function symbols fσ, even when f lacked
two ranks of the forms σ1 · · ·σkσ and σ1 · · ·σkσ′, for distinct σ and σ′. The rationale for keeping this
second conjunct is that with it, function symbols are annotated when used iff they are overloaded in this
way. This means that it is clear from the use of the function symbol, whether or not the annotation is
required. This in turn should help to improve human comprehension of scripts written using overloaded
function symbols.

13 This is mostly a technical restriction, motivated by considerations of convenience. In fact, with a
closed formula ϕ of signature Σ the signature’s mapping of variables to sorts is irrelevant. The reason
is that the formula itself contains its own sort declaration for its term variables, either explicitly, for the
variables bound by a quantifier, or implicitly, for the variables bound by a let binder. Using only closed
formulas then simplifies the task of specifying their signature, as it becomes unnecessary to specify how
the signature maps the elements of X to the signature’s sorts.

14 Distinct sorts can have non-disjoint extensions in a structure. However, whether they do that or not
is irrelevant in SMT-LIB logic. The reason is that the logic has no sort predicates, such as a subsort
predicate, and does not allow one to equate terms of different sorts (the term t1 ≈ t2 is ill-sorted unless
t1 and t2 have the same sort). As a consequence, a formula is satisfiable in a structure where two given
sorts have non-disjoint extensions iff it is satisfiable in a structure where the two sorts do have disjoint
extensions.

15 This requirement is for concreteness. Again, since we work with closed formulas, which internally assign
sorts to their variables, the sorting of variables in a signature is irrelevant.

16 Admittedly, this requirement on theory declarations is somewhat hand-wavy. Unfortunately, it is not
possible to make it a lot more rigorous because theory declarations can use natural language to define
their class of instance theories. The point is again that the definition of the class should impose no
constraints on the interpretation of free sort symbols and free function symbols.

17 It is desirable to have the ability to remove declarations and definitions, for example if they are no longer
needed at some point during an interaction with a solver (and so the memory required for them might be
reclaimed), or if a defined symbol is to be redefined. The current approach of making declarations and
definitions locally scoped supports removal by popping the containing assertion set. Other approaches,
such as the ability to add shadowing declarations or definitions of symbols, or to “undefine” or “undeclare”
them, impose some issues: for example, how to print symbols that have been shadowed, undefined or
undeclared.

18 The motivation for that is to simplify their processing by a solver. This restriction is significant only for
users who want to extend the signature of the theory used by a script with a new polymorphic function
symbol—i.e., one whose rank would contain parametric sorts if it was a theory symbol. For instance,
users who want to declare a “reverse” function on arbitrary lists, must define a different reverse function
symbol for each (concrete) list sort used in the script.

19 Strictly speaking, only sort symbols introduced with declare-sort expand the initial signature of theory
sort symbols. Sort symbols introduced with define-sort do not. They do not construct real sorts, but
aliases of sorts built with theory sorts symbols and previously declared sort symbols.

20 The motivation is to enable interactive users to see easily (exactly) which assertions they have asserted,
without having to keep track of that information themselves.

21 This restriction is for ease of solver implementation.
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22 Unsat cores are useful for applications because they circumscribe the source of unsatisfiability in the
asserted set. The labeling mechanism allows users to track only selected asserted formulas when they
already know that the rest of the asserted formulas are jointly satisfiable.

23 SMT solvers are incomplete for certain logics, typically those that include quantified formulas. However,
even when they are unable to determine whether the set of all assertions Γ is satisfiable or not, SMT
solvers can typically compute a model for a set Γ′ of formulas that is entailed by Γ in the logic. Value
assignments in this model are often useful to a client applications even if they are not guaranteed to come
from a model of Γ.

24 Since it focuses only on preselected, Boolean terms, get-assignment can be implemented much more
efficiently than the very general get-value.

25 The motivation for specifying these two modes in this document is that the first mode (exiting im-
mediately when an error occurs) may be simpler to implement, while the latter may be more useful
for applications, though it might be more burdensome to support the semantics of leaving the state
unmodified by the erroneous command.
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Concrete Syntax

Predefined symbols

!, , as, assert, background, Bool, check-sat, continued-execution, declare-sort,
declare-fun, define-sort, define-fun, distinct, error, exists, exit, false, forall,
get-assertions, get-assignment, get-info, get-model, get-proof, get-unsat-core,
get-value, immediate-exit, incomplete, let, logic, none, NUMERAL, memout, par, pop, push,
DECIMAL, sat, success, set-logic, set-info, set-option, STRING, theory, true, unknown,
unsupported, unsat.

Predefined keywords

:all-statistics, :author, :axioms, :chainable, :definition,
:diagnostic-output-channel, :error-behavior :expand-definitions, :extensions,
:family, :funs, :funs-description, :interactive-mode, :language, :left-assoc, :logic,
:name, :named, :notes, :print-success, :produce-assignments, :produce-models,
:produce-proofs, :produce-unsat-cores, :random-seed, :reason-unknown,
:regular-output-channel, :right-assoc, :script, :sorts, :sorts-description, :status,
:theories, :values, :verbosity, :version.
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Tokens

〈numeral〉 ::= 0 | a non-empty sequence of digits not starting with 0

〈decimal〉 ::= 〈numeral〉.0∗〈numeral〉
〈hexadecimal〉 ::= #x followed by a non-empty sequence of digits and letters

from A to F, capitalized or not

〈binary〉 ::= #b followed by a non-empty sequence of 0s and 1s

〈string〉 ::= ASCII character string in double quotes with C-style escaped
characters: \", \n, . . .

〈symbol〉 ::= a non-empty sequence of letters, digits and the characters
+ - / * = % ? ! . $ ~ & ^ < > @ that does not start
with a digit

| a sequence of printable ASCII characters that starts and ends
with | and does not otherwise contain |

〈keyword〉 ::= : followed by a non-empty sequence of letters, digits and
the characters + - / * = % ? ! . $ ~ & ^ < > @

Members of the 〈symbol〉 category starting with of the characters @ and . are reserved for solver
use. Solvers can use them respectively as identifiers for abstract values and solver generated function
symbols other than abstract values.

S-expressions

〈spec const〉 ::= 〈numeral〉 | 〈decimal〉 | 〈hexadecimal〉 | 〈binary〉 | 〈string〉
〈s expr〉 ::= 〈spec constant〉 | 〈symbol〉 | 〈keyword〉 | ( 〈s expr〉∗ )

Identifiers

〈identifier〉 ::= 〈symbol〉 | ( 〈symbol〉 〈numeral〉+ )

Sorts

〈sort〉 ::= Bool | 〈identifier〉 | ( 〈identifier〉 〈sort〉+ )

Attributes

〈attribute value〉 ::= 〈spec constant〉 | 〈symbol〉 | ( 〈s expr〉∗ )
〈attribute〉 ::= 〈keyword〉 | 〈keyword〉 〈s expr〉
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Terms

〈qual identifier〉 ::= 〈identifier〉 | ( as 〈identifier〉 〈sort〉 )
〈var binding〉 ::= ( 〈symbol〉 〈term〉 )
〈sorted var〉 ::= ( 〈symbol〉 〈sort〉 )
〈term〉 ::= 〈spec constant〉 | 〈qual identifier〉

| ( 〈qual identifier〉 〈term〉+ )

| ( distinct 〈term〉 〈term〉+ )

| ( let ( 〈var binding〉+ ) 〈term〉 )
| ( forall ( 〈sorted var〉+ ) 〈term〉 )
| ( exists ( 〈sorted var〉+ ) 〈term〉 )
| ( ! 〈term〉 〈attribute〉+ )

Theories

〈sort symbol decl〉 ::= ( 〈identifier〉 〈numeral〉 〈attribute〉∗ )
〈meta spec constant〉 ::= NUMERAL | DECIMAL | STRING
〈fun symbol decl〉 ::= ( 〈spec constant〉 〈sort〉 〈attribute〉∗ )

| ( 〈meta spec constant〉 〈sort〉 〈attribute〉∗ )
| ( 〈identifier〉 〈sort〉+ 〈attribute〉∗ )

〈par fun symbol decl〉 ::= 〈fun symbol decl〉
| ( par ( 〈symbol〉+ )

( 〈identifier〉 〈sort〉+ 〈attribute〉∗ ) )

〈theory attribute〉 ::= :sorts ( 〈sort symbol〉+ )

| :funs ( 〈par fun symbol decl〉+ )

| :sorts-description 〈string〉
| :funs-description 〈string〉
| :definition 〈string〉
| :values 〈string〉
| :notes 〈string〉
| 〈attribute〉

〈theory decl〉 ::= ( theory 〈symbol〉 〈theory attribute〉+ )

Logics

〈logic attribute〉 := :theories ( 〈symbol〉+ )

| :language 〈string〉
| :extensions 〈string〉
| :values 〈string〉
| :notes 〈string〉
| 〈attribute〉

〈logic〉 ::= ( logic 〈symbol〉 〈logic attribute〉+ )
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Command options

〈b value〉 ::= true | false

〈option〉 ::= :print-success 〈b value〉
| :expand-definitions 〈b value〉
| :interactive-mode 〈b value〉
| :produce-proofs 〈b value〉
| :produce-unsat-cores 〈b value〉
| :produce-models 〈b value〉
| :produce-assignments 〈b value〉
| :regular-output-channel 〈string〉
| :diagnostic-output-channel 〈string〉
| :random-seed 〈numeral〉
| :verbosity 〈numeral〉
| 〈attribute〉

Info flags

〈info flag〉 ::= :error-behavior

| :name

| :authors

| :version

| :status

| :reason-unknown

| 〈keyword〉
| :all-statistics
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Commands

〈command〉 ::= ( set-logic 〈symbol〉 )
| ( set-option 〈option〉 )
| ( set-info 〈attribute〉 )
| ( declare-sort 〈symbol〉 〈numeral〉 )
| ( define-sort 〈symbol〉 ( 〈symbol〉∗ ) 〈sort〉 )
| ( declare-fun 〈symbol〉 ( 〈sort〉∗ ) 〈sort〉 )
| ( define-fun 〈symbol〉 ( 〈sorted var〉∗ ) 〈sort〉 〈term〉 )
| ( push 〈numeral〉 )
| ( pop 〈numeral〉 )
| ( assert 〈term〉 )
| ( check-sat )

| ( get-assertions )

| ( get-proof )

| ( get-unsat-core )

| ( get-value ( 〈term〉+ ) )

| ( get-assignment )

| ( get-option 〈keyword〉 )
| ( get-info 〈info flag〉 )
| ( exit )

〈script〉 ::= 〈command〉∗

Command responses

〈gen response〉 ::= unsupported | success | ( error 〈string〉 )

〈error-behavior〉 ::= immediate-exit | continued-execution
〈reason-unknown〉 ::= timeout | memout | incomplete
〈status〉 ::= sat | unsat | unknown
〈info response〉 ::= :error-behavior 〈error-behavior〉

| :name 〈string〉
| :authors 〈string〉
| :version 〈string〉
| :status 〈status〉
| :reason-unknown 〈reason-unknown〉
| 〈attribute〉

〈gi response〉 ::= ( 〈info response〉+ )
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〈cs response〉 ::= 〈status〉

〈ga response〉 ::= ( 〈term〉∗ )

〈proof 〉 ::= 〈s expr〉
〈gp response〉 ::= 〈proof 〉

〈guc response〉 ::= ( 〈symbol〉∗ )

〈valuation pair〉 ::= ( 〈term〉 〈term〉 )
〈gv response〉 ::= ( 〈valuation pair〉+ )

〈t valuation pair〉 ::= ( 〈symbol〉 〈b value〉 )
〈gta response〉 ::= ( 〈t valuation pair〉∗ )
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Abstract Syntax

Common Notation

b ∈ B, the set of boolean values r ∈ R, the set of non-negative rational numbers
n ∈ N , the set of natural numbers w ∈ W, the set of character strings
s ∈ S, the set of sort symbols u ∈ U , the set of sort parameters
f ∈ F , the set of function symbols x ∈ X , the set of variables
a ∈ A, the set of attribute names v ∈ V, the set of attribute values
T ∈ T N , the set of theory names L ∈ L, the set of logic names

Sorts

(Sorts) σ ::= s σ∗

(Parametric Sorts) τ ::= u | s τ∗

Terms

(Attributes) α ::= a | a = v

(Terms) d ::= x | f t∗ | fσ t∗
| ∃ (x:σ)+ t | ∀ (x:σ)+ t | let (x = t)+ in t
| t α+
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Well-sorting rules for terms

Σ ` x α∗ : σ
if x:σ ∈ Σ

Σ ` t1 : σ1 · · · Σ ` tk : σk

Σ ` (f t1 · · · tk) α∗ : σ
if

{
f :σ1 · · ·σkσ ∈ Σ and

f :σ1 · · ·σkσ′ /∈ Σ for all σ′ 6= σ

Σ ` t1 : σ1 · · · Σ ` tk : σk

Σ ` (fσ t1 · · · tk) α∗ : σ
if

{
f :σ1 · · ·σkσ ∈ Σ and

f :σ1 · · ·σkσ′ ∈ Σ for some σ′ 6= σ

Σ[x1:σ1, . . . , xk+1:σk+1] ` t : Bool

Σ ` (Qx1:σ1 · · · xk+1:σk+1 t) α
∗ : Bool

if Q ∈ {∃,∀}

Σ ` t1 : σ1 · · · Σ ` tk+1 : σk+1 Σ[x1:σ1, . . . , xk+1:σk+1] ` t : σ

Σ ` (let x1 = t1 · · · xk+1 = tk+1 in t) α∗ : σ

Theories

(Sort symbol declarations) sdec ::= s n α∗

(Fun. symbol declarations) fdec ::= f σ+ α∗

(Param. fun. symbol declarations) pdec ::= fdec | Πu+ (f τ+ α∗)

(Theory attributes) tattr ::= sorts = sdec+ | funs = pdec+

| sorts-description = w
| funs-description = w
| definition = w | axioms = t+

| notes = w | α

(Theory declarations) tdec ::= theory T tattr+

Logics

(Logic attributes) lattr ::= theories = T+ | language = w
| extensions = w | values = w
| notes = w | α

(Logic declarations) ldec ::= logic L lattr+
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Command options and info names

(Options) o ::= print-success = b
| expand-definitions = b
| interactive-mode = b
| produce-proofs = b
| produce-unsat-cores = b
| produce-models = b
| produce-assignments = b
| regular-output-channel = w
| diagnostic-output-channel = w
| random-seed = n
| verbosity = n
| α

(Info flags) i ::= all-statistics
| error-behavior
| name
| authors
| version
| status
| reason-unknown
| a
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Commands

(Commands) c ::= set-logic L
| set-option o
| set-info α
| declare-sort s n
| define-sort s u∗ τ
| declare-fun f σ∗ σ
| define-fun f (x:σ)∗ σ t
| push n
| pop n
| assert t
| check-sat
| get-assertions
| get-value t+

| get-model
| get-proof
| get-unsat-core
| get-info i
| get-option a
| exit

(Scripts) scr ::= c∗
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Command responses

(General response) gr ::= unsupported | success | error w

(get-info response) gir ::= i+

(Info response) i ::= error-behavior = eb
| name = w
| authors = w+

| version = w
| status = csr
| reason-unknown = ru
| notes = w
| α

(Error behavior) eb ::= immediate-exit | continue-execution

(Reason unknown) ru ::= memout | incomplete

(check-sat response) csr ::= sat | unsat | unknown

(get-assertions response) gar ::= t∗

(get-proof response) gpr ::= p

(get-unsat-core response) gucr ::= f∗

(get-value responses) gvr ::= (t t)+

(get-assignment response) gta ::= (f b)∗



Appendix D

Concrete to Abstract Syntax

[To be provided in a later release]
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